Acylchloridy

Acylchloridy jsou organické sloučeniny s molekulami obsahujícími skupinu -COCl; jedná se o reaktivní funkční deriváty karboxylových kyselin. Acylchloridy patří mezi acylhalogenidy.

Názvosloví

Pokud je acyl hlavní skupinou, tak se acylchloridy pojmenovávají podle názvu tohoto acylu, ke kterému se přidá označení -chlorid, například:

Pokud acyl není hlavní skupinou, tak se používá předpona -chlorkarbonyl, například:

  • kyselina (chlorkarbonyl)octová ClOCCH2COOH

Vlastnosti

Jelikož u acylchloridů nedochází k tvorbě vodíkových vazeb, tak mají tyto látky nižší teploty varu a tání než odpovídající karboxylové kyseliny; teplota varu kyseliny octové je 118 °C, zatímco acetylchlorid vře již při 51 °C.

Podobně jako většina karbonylových sloučenin mají acylchloridy v infračervených spektrech výrazný absorpční pás kolem hodnoty vlnočtu 1750 cm−1.

Nejjednodušším stabilním acylchloridem je acetylchlorid (systematickým názvem ethanoylchlorid); formylchlorid (methanoylchlorid) je za běžných podmínek nestabilní, lze jej však připravit za teplot pod -60 °C.[1][2]

Výroba a příprava

V průmyslu

Průmyslově se acylchloridy vyrábějí reakcí acetanhydriduchlorovodíkem. U benzoylchloridu se používá částečná hydrolýza benzotrichloridu:[3]

C6H5CCl3 + H2O → C6H5C(O)Cl + 2 HCl

V laboratořích

Laboratorně se acylchloridy, podobně jako chlorované uhlovodíky, získávají nahrazením hydroxylových skupin atomy chloru: karboxylová kyselina reaguje s chloridem thionylu (SOCl2),[4] chloridem fosforitým (PCl3)[5] nebo chloridem fosforečným (PCl5):[6][7]

RCOOH + SOCl2 → RCOCl + SO2 + HCl
3 RCOOH + PCl3 → 3 RCOCl + H3PO3
RCOOH + PCl5 → RCOCl + POCl3 + HCl

Reakci s chloridem thionylu je možné katalyzovat dimethylformamidem.[8] Při tomto postupu vznikají oxid siřičitý a chlorovodík, což jsou plyny, které se z reakční směsi odstraňují a tím dochází k posunu reakční rovnováhy ve prospěch produktů. Přebytek thionylchloridu, jehož teplota varu činí 74,6 °C, lze taktéž snadno odstranit.[7] Mechanismy reakcí s thionylchloridem a chloridem fosforečným jsou podobné; níže je zobrazen mechanismus při použití thionylchloridu:[8]

Při jiné metodě se používá oxalylchlorid:

RCOOH + ClCOCOCl → RCOCl + CO + CO2 + HCl

Katalyzátorem je zde dimethylformamid, který na začátku reaguje s oxalylchloridem za vzniku iminiového meziproduktu,

který poté reaguje s karboxylovou kyselinou, přičemž dochází k odštěpení oxidu a obnovení katalyzátoru.

Jsou známy i takové postupy přípravy acylchloridů, při kterých nevzniká HCl, jako jsou například Appelova reakce[9]

RCOOH + Ph3P + CCl4 → RCOCl + Ph3PO + HCCl3

a příprava za použití trichlortriazinu:[10]

Reakce

Nukleofilní reakce

Acylchloridy jsou mnohem reaktivnější než karboxylové kyseliny; chloridový aniont je velmi dobrou odcházející skupinou, zatímco hydroxid tuto vlastnost za obvyklých podmínek nemá, a tak mohou s karbonylovou skupinou reagovat i slabé nukleofily; příkladem může být reakce s vodou za vzniku příslušné karboxylové kyseliny:

RCOCl + H2O → RCO2H + HCl

Acylchloridy lze použít na přípravu derivátů karboxylových kyselin jako jsou anhydridy, estery a amidy, reakcemi se solemi příslušných kyselin, alkoholy či aminy. Za přítomnosti zásady, například vodného roztoku hydroxidu sodného nebo pyridinu,[7] případně přebytku aminu (při přípravě amidů),[8] je potřeba odstraňovat vznikající chlorovodík a reakce musí být katalyzována. I když lze estery či amidy často získat reakcí karboxylové kyseliny s alkoholem nebo aminem, tak jsou tyto reakce vratné, což vede k nízké výtěžnosti; příprava těchto látek z acylchloridů je rychlá a nevratná a tak se často upřednostňuje před přímou reakcí s karboxylovou kyselinou.[7]

Při reakcích acylchloridů s Grignardovými činidly se obvykle nejprve tvoří ketony a následně terciární alkoholy; výjimku představují reakce s některými organickými sloučeninami kadmia, při nichž se proces zastaví u ketonu. Nukleofilní reakce s Gilmanovými činidly (organickými sloučeninami obsahujícími lithium a měď) také, díky nižší reaktivitě těchto látek, poskytují ketony.[7] Chloridy aromatických kyselin jsou obecně méně reaktivní než chloridy alkylových kyselin a často jsou tak potřeba tvrdší podmínky.

Acylchloridy je možné zredukovat silnými donory hydridů, jako je hydrid lithno-hlinitý, za tvorby primárních alkoholů. Tri-terc-butoxyhydrid lithnohlinitý přeměňuje acylchloridy na aldehydy.[11]

Elektrofilní reakce

Acylchloridy se, společně s Lewisovými kyselinami, jako například chloridem železitým a chloridem hlinitým, účastní Friedelových–Craftsových acylací, při nichž vznikají arylketony.[5][7]

V prvním kroku proběhne disociace chloridu, kterou vyvolá Lewisova kyselina:

První krok Friedelovy–Craftsovy acylace

Poté následuje nukleofilní atak arenu na acylovou skupinu:

Druhý krok Friedelovy–Craftsovy acylace

Nakonec nastane spojení chloridového aniontu s uvolněným protonem za vzniku HCl a regenerace katalyzátoru (zde AlCl3):

Třetí krok Friedelovy–Craftsovy acylace

Bezpečnost

Vzhledem ke značné reaktivitě těchto látek je při skladování acylchloridů nutné opatrné zacházení. Mají dráždivé účinky na oči, jelikož reagují s vodou za vzniku chlorovodíku a organických kyselin.

Reference

V tomto článku byl použit překlad textu z článku Acyl chloride na anglické Wikipedii.

  1. John C. Sih. Encyclopedia of Reagents for Organic Synthesis. New York: John Wiley & Sons, 15. 4. 2001. Dostupné online. ISBN 9780471936237. Kapitola Formyl Chloride. (anglicky) 
  2. Richard O.C. Norman; James M. Coxon. Principles of Organic Synthesis. [s.l.]: CRC Press, 16. 9. 1993. (3). Dostupné online. ISBN 978-0-7487-6162-3. S. 371. (anglicky) 
  3. Takao Maki, Kazuo Takeda “Benzoic Acid and Derivatives” Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim. doi: 10.1002/14356007.a03_555
  4. B. Helferich; W. Schaefer. n-Butyrl chloride. Organic Syntheses. 1929, s. 32. (anglicky) 
  5. a b C. F. H. Allen; W.E. Barker. Desoxybenzoin. Organic Syntheses. 1932, s. 16. 
  6. Roger Adams. p-Nitrobenzoyl chloride. Organic Syntheses. 1923, s. 75. (anglicky) 
  7. a b c d e f Robert W. Boyd; Robert Morrison. Organic chemistry. [s.l.]: Prentice Hall, 1992. Dostupné online. ISBN 0-13-643669-2. S. 666–762. (anglicky) 
  8. a b c Jonathan Clayden. Organic chemistry. [s.l.]: Oxford University Press, 2001. Dostupné online. ISBN 0-19-850346-6. S. 276–296. (anglicky) 
  9. "Triphenylphosphine-carbon tetrachloride Archivováno 23. 3. 2010 na Wayback Machine. Taschner, Michael J. e-EROS: Encyclopedia of Reagents for Organic Synthesis, 2001
  10. K. Venkataraman; D. R. Wagle. Cyanuric chloride : a useful reagent for converting carboxylic acids into chlorides, esters, amides and peptides. Tetrahedron Letters. 1979, s. 3037–3040. (anglicky) 
  11. William Reusch. Carboxylic Acid Derivatives [online]. Michiganská státní univerzita [cit. 2019-04-15]. Dostupné v archivu pořízeném dne 2016-05-16. 

Externí odkazy

  • Obrázky, zvuky či videa k tématu Acylchloridy na Wikimedia Commons

Média použitá na této stránce

Synthesis of acyl chlorides with cyanuric chloride.png
Synthesis of acyl chloridescyanuric chloride K. Venkataraman, and D. R. Wagle (1979). "Cyanuric chloride : a useful reagent for converting carboxylic acids into chlorides, esters, amides and peptides". Tet. Lett. 20 (32): 3037–3040. DOI:10.1016/S0040-4039(00)71006-9.
Reaction to give acyl chloride and DMF.png
Acyl chloride using oxalyl chloride and dimethylformamide (second step) Clayden, Jonathan (2001) Organic chemistry, Oxford: Oxford University Press, pp. 296 ISBN: 0-19-850346-6.
Action of thionyl chloride on carboxylic acid.png
Action of en:thionyl chloride on en:carboxylic acids. Clayden, Jonathan (2001) Organic chemistry, Oxford: Oxford University Press, pp. 276–296 ISBN: 0-19-850346-6.
Reaction of oxalyl chloride with DMF.png
Acyl chloride using oxalyl chloride and dimethylformamide (first step) Clayden, Jonathan (2001) Organic chemistry, Oxford: Oxford University Press, pp. 296 ISBN: 0-19-850346-6.