Bernoulliho rovnice
Bernoulliova rovnice je vztah užívaný v mechanice tekutin, který odvodil Daniel Bernoulli a který vyjadřuje zákon zachování mechanické energie pro ustálené proudění ideální kapaliny (Energie je v rovnici obvykle přepočtena na objemovou jednotku kapaliny.).
kde je hustota kapaliny, v je rychlost proudění, p je tlak v kapalině a u je potenciál vnějšího konzervativního pole objemové síly (gravitační síly, unášivé setrvačné síly nebo jejich kombinace, jako je tíhová síla) v daném bodě. První člen v Bernoulliově rovnici se nazývá dynamický n. kinetický tlak a představuje objemovou hustotu kinetické energie, druhý člen představuje tlakovou potenciální energii objemové jednotky kapaliny a třetí člen potenciální energii objemové jednotky kapaliny v silovém poli vnější konzervativní síly, v němž se kapalina nachází. Součet kinetické energie a potenciální energie (tlakové + vnější) v jednotce objemu je ve všech místech kapaliny stejný. Tato rovnice bývá často uváděna ve tvaru, který platí pro homogenní tíhové pole:
Platí, že pokud na kapalinu v klidu působí tíhová síla, je ve stejné hloubce v každém bodě stejný tlak. Pokud je kapalina v pohybu tak tento vztah neplatí. Slovy můžeme Bernoulliho jev popsat takto: v místě s větším průřezem má proudící kapalina větší tlak, ale menší rychlost, zatímco v místě s menším průřezem má menší tlak, ale větší rychlost (Fakt, že při větším průřezu je rychlost kapaliny menší, je důsledkem rovnice kontinuity.).
Odvození pro nestlačitelnou kapalinu
Pokud kapalina o elementu hmotnosti proudí ve vodorovné trubici o průřezu rychlostí , platí pro ni pohybová rovnice:
Rozepíšeme tuto rovnici tak, aby v ní vystupovala hustota a průřez trubice
S využitím vztahu
tato rovnice přejde na
tedy
což zintegrováním dá
Pokud se navíc nacházíme v poli nějaké vnější konzervativní objemové síly (např. gravitace), přičteme jeho potenciál (na jednotku objemu) k tlakovému potenciálu, čímž přímočaře získáme rovnici
Poněkud přímější odvození vychází ze zákona zachování energie. U kapalin uvažujeme potenciální energii tlakovou Ep = pV.
Za předpokladu, že Ek + Ep + Eg = konst., potom platí
vztažením energie na jeden kilogram kapaliny (vydělením hmotností) dostaneme tzv. energetický tvar rovnice:
nebo (vydělením objemem) tlakový tvar:
případně původní výškový tvar (vydělením tíhou):
Důsledky
Z Bernoulliho rovnice vyplývá, že statický tlak proudící kapaliny klesá s rostoucí rychlostí. Pokud plyn proudí trubicí dostatečnou rychlostí, tlak v tom místě se natolik zmenší, že toho lze využít například pro odsávání. Tomuto jevu se říká hydrodynamický paradox (hydrodynamické paradoxon) a využívá se ho například u rozprašovačů, natěračských stříkacích pistolí, ejektorů nebo v karburátoru.
- Výtoková rychlost
Ze zákona zachování energie lze také odvodit vztah pro výtokovou rychlost kapaliny při vytékání malým otvorem z nádoby s hladinou ve výšce h, neboť lze říci, že výtoková rychlost ideální kapaliny je stejná jako rychlost, kterou by kapalina získala při volném pádu z výšky h:
- - tzv. Torricelliho vzorec
Související články
Externí odkazy
- Obrázky, zvuky či videa k tématu Bernoulliho rovnice na Wikimedia Commons
Média použitá na této stránce
Autor: Andrejdam, Licence: CC BY-SA 4.0
Demonstration of a relation between dynamic and static pressure, i.e. Bernoulli's principle. When blowing, the dynamic pressure between the paper and the plate increases. According to the Bernoulli's principle, in this case the static pressure between the plate and the paper decreases, which forces the paper to stick to the plate. Performed and explained by Prof. Oliver Zajkov at the Physics Institute at the Ss. Cyril and Methodius University of Skopje, Macedonia.