Borazin
Borazin | |
---|---|
Strukturní vzorec | |
Model molekuly | |
Obecné | |
Systematický název | 1,3,5,2,4,6-triazatriborinan |
Ostatní názvy | borazol |
Sumární vzorec | B3H6N3 |
Vzhled | bezbarvá kapalina |
Identifikace | |
Registrační číslo CAS | 6569-58-3 |
PubChem | 138768 |
SMILES | [BH-]1-[NH+]=[BH-]-[NH+]=[BH-]-[NH+]=1 |
InChI | 1S/B3H6N3/c1-4-2-6-3-5-1/h1-6H |
Vlastnosti | |
Molární hmotnost | 80,50 g/mol |
Teplota tání | −58 °C (215 K) |
Teplota varu | 53 °C (326 K) |
Hustota | 0,81 g/cm3 |
Bezpečnost | |
[1] Nebezpečí[1] | |
Není-li uvedeno jinak, jsou použity jednotky SI a STP (25 °C, 100 kPa). | |
Některá data mohou pocházet z datové položky. |
Borazin, také nazývaný borazol, je anorganická sloučenina se vzorcem B3H6N3. V její molekule se střídají tři BH a tři NH jednotky. Sloučenina je izoelektronická a izostrukturní s benzenem a tak bývá někdy nazývána „anorganický benzen“. Podobně jako u benzenu jde o bezbarvou kapalinu[2] s aromatickým zápachem.
Příprava
Borazin popsali roku 1926 chemici Alfred Stock a Erich Pohland jako produkt reakce diboranu s amoniakem.[3]
Borazin lze získat reakcí diboranu a amoniaku v molárním poměru 1:2 při 250–300 °C; výtěžnost reakce je 50 %:
- 3 B2H6 + 6 NH3 → 2 B3H6N3 + 12 H2
Jiný, účinnější, postup spočívá v reakci tetrahydridoboritanu sodného se síranem amonným:[4]
- 6 NaBH4 + 3 (NH4)2SO4 → 2 B3N3H6 + 3 Na2SO4 + 18 H2
Borazin je také možné získat dvoukrokovým postupem, ve kterém je nejprve chlorid boritý přeměněn na trichlorborazin:
- 3 BCl3 + 3 NH4Cl → Cl3B3H3N3 + 9 HCl
a vazby B-Cl se následně mění na vazby B-H:
- 2 Cl3B3H3N3 + 6 NaBH4 → 2 B3H6N3 + 3 B2H6 + 6 NaCl
Struktura
Borazin je izoelektronický s benzenem a má podobný systém vazeb, a tak bývá někdy nazýván „anorganický benzen“. Toto přirovnání však není zcela přesné, protože bor a dusík mají rozdílné elektronegativity. Pomocí rentgenové krystalografie bylo zjištěno, že délky všech vazeb v borazinovém cyklu jsou 142,9 pm, tedy podobné jako u benzenu.[5]
Borazinový cyklus nevytváří však pravidelný šestiúhelník; vazebné úhly jsou 117,1° na atomech boru a 122,9° na dusících, v důsledku čehož má molekula odlišnou symetrii.
Elektronegativita boru na Paulingově stupnici je 2,04, zatímco u dusíku má hodnotu 3,04, což má za následek snížení elektronové hustoty na atomech boru a volný elektronový pár na dusíku tak vytváří různé mezomerní struktury.
Bor se chová jako Lewisova kyselina a dusík jako Lewisova zásada.
Aromaticita
Vzhledem k jeho podobnosti s benzenem bylo u borazinu provedeno několik výpočetních a experimentálních analýz ohledně aromaticity. Počet pí elektronů v molekule borazinu odpovídá pravidlu 4n + 2 a délky všech vazeb B-N jsou stejné, což naznačuje, že by mělo jít o aromatickou sloučeninu. Rozdíly v elektronegativitě mezi borem a dusíkem však způsobují nerovnoměrné rozdělení náboje, které vede k více iontové povaze vazeb a delokalizace elektronů tak je slabší. Borazin je se standardní slučovací entalpií ΔHf −531 kJ/mol tepelně značně stabilní.
Přirozené vazebné orbitaly
Analýzou přirozených vazebných orbitalů bylo zjištěno, že borazin je jen slabě aromatický.[6]
V modelu přirozených vazebných orbitalů jsou vazby B-N v cyklu mírně odchýlené od spojnic atomových jader a B a N mají rozdílné náboje. Na základě analýzy přirozeného chemického stínění byla získána další data podporující aromaticitu vazeb B-N. Výpočty založenými na přirozených vazebných orbitalech se ukázalo, že tyto vazby π vytvářejí slabý kruhový proud, který naznačuje určitou míru delokalizace.
Elektronová lokalizační funkce (ELF)
Topologickou analýzou prostřednictvím elektronové lokalizační funkce (ELF) lze zjistit, že borazin může být popsán jako π aromatická sloučenina. Vazby v borazinu jsou ovšem méně delokalizované než v benzenu.[7]
Reaktivita
Hydrolýza
Borazin se snadno hydrolyzuje za vzniku kyseliny borité, amoniaku a vodíku.
Polymerizace
Zahříváním borazinu na 70 °C se uvolňuje vodík a vzniká polyborazylen:
- n B3N3H6 → 1/n[B3N3H4]n
Reakce s halogenovodíky a halogeny
S chlorovodíkem vytváří borazin adukt.
- B3N3H6 + 3 HCl → B3N3H9Cl3
- Adiční reakce borazinu s chlorovodíkem
- B3N3H9Cl3 + NaBH4 → (BH4N)3
- Redukce borazinu tetrahydridoboritanem sodným
K provedení adiční reakce s bromem není nutný katalyzátor. U borazinů probíhají nukleofilní ataky na atomy boru a elektrofilní na atomy dusíku.
Prekurzor keramických materiálů
Nitrid boritý lze připravit zahříváním polyborazylenu na 1 000 °C.[4]
Boraziny se také používají na výrobu dalších keramických materiálů, například karbonitridů boru. Rovněž mohou sloužit jako prekurzory při přípravě tenkých vrstev a jednovrstevných povlaků hexagonálního nitridu boritého na povrchu katalyzátorů, jako jsou měď,[8] platina,[9] nikl,[10] železo[11] i další, pomocí chemické depozice z plynné fáze.
Polyborazyleny byly navrženy jako možné materiály pro uchovávání vodíku v palivových článcích.[12]
Společně s jinými sloučeninami typu B-N byly u smíšených amino-nitrovaných borazinů zjištěny výbušné vlastnosti podobné jako u CL-20.[13][14]
Podobné sloučeniny
C2H2B2N2 je šestičlenný heterocyklus obsahující dva atomy uhlíku, dva dusíky a dva atomy boru ve dvojicích naproti sobě.[15][16]
1,2-Dihydro-1,2-azaborin (C4BNH6) je šestičlenný heterocyklus se čtyřmi atomy uhlíku, jedním dusíkem a jedním borem.
- Iminoboran
Reference
V tomto článku byl použit překlad textu z článku Borazine na anglické Wikipedii.
- ↑ a b Borazine. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-24]. Dostupné online. (anglicky)
- ↑ Duward Shriver; Peter Atkins. Inorganic Chemistry. New York: W. H. Freeman and Company, 2010. ISBN 978-1429218207. S. 328.
- ↑ Alfred Stock; Erich Pohland. Borwasserstoffe, VIII. Zur Kenntnis des B2H6 und des B5H11. Chemische Berichte. 1926, s. 2210–2215. DOI 10.1002/cber.19260590906.
- ↑ a b Thomas Wideman; Paul J. Fazen; Anne T. Lynch; Kai Su; Edward E. Remsen; Larry G. Sneddon. Borazine, Polyborazylene, β‐Vinylborazine, and Poly(β‐Vinylborazine). Inorganic Syntheses. 1998. DOI 10.1002/9780470132630.ch39.
- ↑ R. Boese; A. H. Maulitz; P. Stellberg. Solid-State Borazine: Does it Deserve to be Entitled "Inorganic Benzene"?. Chemische Berichte. 1994, s. 1887–1889. DOI 10.1002/cber.19941271011.
- ↑ W. Shen; M. Li; F. Li; S. Wang. Theoretical study of borazine and its derivatives. Inorganica Chimica Acta. 2007, s. 619–624. DOI 10.1016/j.ica.2006.08.028.
- ↑ J. C. Santos; W. Tiznado; R. Contreras; P. Fuentealba. Sigma-pi separation of the electron localization function and aromaticity. The Journal of Chemical Physics. 2004, s. 1670–1673. DOI 10.1063/1.1635799. PMID 15268298. Bibcode 2004JChPh.120.1670S.
- ↑ In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper. Chemistry of Materials. 2014, s. 6380–6392. DOI 10.1021/cm502603n. PMID 25673919.
- ↑ G. Kim; A. R. Jang; H. Y. Jeong; Z. Lee; D. J. Kang; H. S. Shin. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Letters. 2013, s. 1834–1839. DOI 10.1021/nl400559s. PMID 23527543. Bibcode 2013NanoL..13.1834K.
- ↑ Shahana Chatterjee; Zhengtang Luo; Muharrem Acerce; Douglas M. Yates; A. T. Charlie Johnson; Larry G. Sneddon. Chemical Vapor Deposition of Boron Nitride Nanosheets on Metallic Substrates via Decaborane/Ammonia Reactions. Chemistry of Materials. 2011-10-25, s. 4414–4416. ISSN 0897-4756. DOI 10.1021/cm201955v.
- ↑ Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Letters. 2015, s. 1867–1875. DOI 10.1021/nl5046632. PMID 25664483. Bibcode 2015NanoL..15.1867C.
- ↑ Efficient regeneration of partially spent ammonia borane fuel. Angewandte Chemie. 2009, s. 6812–6816. DOI 10.1002/anie.200900680. PMID 19514023.
- ↑ E. C. Koch; T. M. Klapötke. Boron-Based High Explosives. Propellants, Explosives, Pyrotechnics. 2012, s. 335–344. DOI 10.1002/prep.201100157.
- ↑ Polymorphism, fluorescence, and optoelectronic properties of a borazine derivative. Chemistry. 2013, s. 7771–7779. Dostupné online. DOI 10.1002/chem.201204598.
- ↑ Ambrish Kumar Srivastava; Neeraj Misra. Introducing "carborazine" as a novel heterocyclic aromatic species. New Journal of Chemistry. 2015, s. 2483–2488. DOI 10.1039/c4nj02089h.
- ↑ D. Bonifazi; F. Fasano; M. M. Lorenzo-Garcia; D. Marinelli; H. Oubaha; J. Tasseroul. Boron-nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives. Chemical Communications. 2015, s. 15 222 – 15 236. DOI 10.1039/C5CC06611E. PMID 26411675.
Externí odkazy
- Obrázky, zvuky či videa k tématu Borazin na Wikimedia Commons
Média použitá na této stránce
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for flammable substances
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for corrosive substances
Autor: Hbf878, Licence: CC0
Structure and dimensions of borazine, redrawn from File:Borazine-dimensions-2D.png and File:Borazine 2D Dimensions.jpg.
Autor: Hbf878, Licence: CC0
Chemical structure of a polyborazylene polymer.
Space-filling model of the borazine molecule
Borazin Mesomers
Structure of Boroncaronitrides