Diskrétní kosinová transformace

2D DCT (typu II) v porovnání s DFT. DCT koncentruje nejvíce energie na nejnižších frekvencích.

Diskrétní kosinová transformace (anglicky discrete cosine transform, zkratka DCT) je diskrétní transformace podobná diskrétní Fourierově transformaci (DFT), ale produkující pouze reálné koeficienty. Je jednou z mnoha transformací příbuzných Fourierově transformaci. Existuje 8 standardních variant DCT, z nichž 4 jsou běžně používané.

Nejběžnější varianta diskrétní kosinové transformace je DCT typu II, která je často nazývána pouze „DCT“. K ní inverzní transformace je DCT typu III, také rovněž často nazývána pouze „inverzní DCT“ nebo zkratkou „IDCT“.

Aplikace

DCT-II (dole) v porovnání s DFT (uprostřed) vstupního signálu (nahoře).

DCT je často používána při zpracování signálu a obrazu, obzvláště pro ztrátovou kompresi. Je například použita v obrazovém formátu JPEG, formátech MJPEG, MPEG a DV. Její modifikace jsou použity v audio formátech AAC, Vorbis a MP3.

Definice

Formálně je DCT lineární invertovatelná funkce F : RNRN (kde R značí množinu reálných čísel); nebo ekvivalentně čtvercová matice N × N. Existuje několik variant DCT s mírně modifikovanou definicí. N reálných čísel x0, …, xN-1 je transformováno do N reálných čísel X0, …, XN-1 podle jedné z rovnic:

DCT-I

DCT-I není definována pro N < 2. (Všechny ostatní typy DCT jsou definovány pro libovolné N.)

Inverzní transformace k DCT-I je DCT-I násobená 2/(N-1).

DCT-II

DCT-II je pravděpodobně nejrozšířenější forma a je často uváděna pouze jako „DCT“.

Inverzní transformace k DCT-II je DCT-III násobená 2/N.

DCT-III

Protože je to inverzní transformace k DCT-II (až na „měřítko“, anglicky scale factor), je tato forma někdy uváděna pouze jako „inverzní DCT“ („IDCT“).

Inverzní transformace k DCT-III je DCT-II násobená 2/N.

DCT-IV

Inverzní transformace k DCT-IV je DCT-IV násobená 2/N.

DCT V-VIII

Tyto varianty se v praxi používají zřídka.

Vícerozměrné DCT

Vícerozměrná transformace (transformace vícerozměrné funkce) může být spočítána jako série jednorozměrných transformací postupně v každém rozměru. Pro 2D například nejprve po řádcích a pak po sloupcích (nebo naopak).

2D DCT-II je například dána rovnicí:

Výpočet

Přestože přímá aplikace těchto rovnic může vyžadovat O(N2) operací, je možné spočítat stejnou transformaci pouze se složitostí O(N log N) použitím rychlé Fourierovy transformace (anglicky fast Fourier transform, FFT).

Příklad

Úseky zdrojového kódu v jazyce C (DCT typu II a typu III):

Dopředná

Dopředná (anglicky forward) 1D DCT (typu II):

void fct(const double *input, double *output)
{
	for(int h=0; h<LENGTH; h++)
	{
		double sum = 0;
		for(int j=0; j<LENGTH; j++)
		{
			double xk = input[j];
			double c = (M_PI/LENGTH)*h*(j+0.5);
			sum += xk*cos(c);
		}
		output[h] = sum;
	}
}

Zpětná

Zpětná (anglicky inverse) 1D DCT (typu III):

void ict(const double *input, double *output)
{
	for(int h=0; h<LENGTH; h++)
	{
		double sum = 0;
		for(int j=1; j<LENGTH; j++)
		{
			double xk = input[j];
			double c = (M_PI/LENGTH)*j*(h+0.5);
			sum += xk*cos(c);
		}
		sum += 0.5*input[0];
		sum *= 2/(double)LENGTH;
		output[h] = sum;
	}
}

Související články

Reference

V tomto článku byl použit překlad textu z článku Discrete cosine transform na anglické Wikipedii.

Externí odkazy

Média použitá na této stránce

Example dft dct.svg
Autor: Alessio Damato, Licence: CC BY-SA 3.0

The plot shows the differences between a DFT and a DCT of a generic signal.

The first plot is a sampled ramp in the time domain. The second one represents the modulus of its DFT. The third one the plot of its DCT.

I obtained it in a two step process. First I ran the following Matlab code:


thus creating a file called example_dft_dct.dat. Then I ran the following Gnuplot code:


Dandelion clock quarter dft dct.png
Autor: Alessio Damato, Licence: CC BY-SA 3.0
the picture shows the difference between the DFT and a DCT of an image