Goniometrická funkce

Jedna perioda funkcí sinus a kosinus

Jako goniometrické funkce se v matematice nazývá skupina šesti funkcí velikosti úhlu používaných například při zkoumání trojúhelníků a periodických jevů. Goniometrické funkce jsou základem goniometrie. Obvykle se definují jako poměr dvou stran pravoúhlého trojúhelníku nebo délky určitých částí úseček v jednotkové kružnici. Jejich modernější definice je založena na nekonečných řadách nebo řešeních určitých diferenciálních rovnic, díky čemuž je lze vztáhnout také ke komplexním číslům. Inverzní funkce k funkcím goniometrickým se označují jako funkce cyklometrické.

Animace zobrazující vztah mezi jednotkovou kružnicí a funkcemi sinus a kosinus.
Sinus (vlevo), kosinus (dole) a tangens (vpravo) na jednotkové kružnici

Elementárními goniometrickými funkcemi jsou:

značka a vzorecjiné značky
sinussin[p 1]
kosinuscos
tangenstg = sin/costan

Někdy se používají označení také pro jejich převrácené hodnoty:

značka a vzorecjiné značky
sekanssec = 1/cos
kosekanscosec = 1/sincsc
kotangenscotg = cos/sincot, cotan

Historicky se používaly zvláštní názvy ještě pro další odvozené funkce:

značka a vzorecjiné značkypoloviční hodnota
sinus versusversin = 1 − coshaversin = versin/2
kosinus versusvercosin = 1 + coshavercosin = vercosin/2
sinus koversuscoversin = 1 − sincvshacoversin = coversin/2
kosinus koversuscovercosin = 1 + sinhacovercosin = covercosin/2
exsekansexsec = sec − 1
exkosekansexcsc = cosec − 1

____________

  1. Správný zápis je sin x, kde x je úhel, argument funkce. Podobně i u ostatních funkcí. Avšak protože v tomto přehledu je argument vždy stejný, je v zájmu přehlednosti vynechán.


Definice

Pravoúhlý trojúhelník

Pravoúhlý trojúhelník s pravým úhlem γ při vrcholu C. Přilehlá a protilehlá odvěsna se vztahují k úhlu α.

Při definici s pomocí pravoúhlého trojúhelníka jsou jednotlivé prvky trojúhelníka ABC následující:

  • pravý úhel je při vrcholu C
  • určovaným úhlem je úhel , vzhledem k němu je
    • strana a označována jako protilehlá odvěsna
    • strana b označována jako přilehlá odvěsna
    • nejdelší strana c je nazývána přepona trojúhelníka

Předpokládá se, že trojúhelník leží v euklidovském prostoru a součet jeho vnitřních úhlů je tak radiánů neboli 180 °. Pak:

  • Sinus je poměr délky odvěsny protilehlé tomuto úhlu a délky přepony.
  • Kosinus je poměr délky odvěsny přilehlé tomuto úhlu a délky přepony.
  • Tangens je poměr délek odvěsny protilehlé tomuto úhlu a délky odvěsny k němu přilehlé.
  • Kotangens je poměr délek odvěsny přilehlé tomuto úhlu a délky odvěsny k němu protilehlé.
  • Sekans je poměr délky přepony a délky odvěsny přilehlé tomuto úhlu.
  • Kosekans je poměr délky přepony a délky odvěsny protilehlé tomuto úhlu.

Jednotková kružnice

Těchto šest funkcí může být také definováno pomocí jednotkové kružnice, což je kružnice o poloměru jedna se středem v počátku soustavy souřadnic. Tento způsob definice nemá valné praktické využití, koneckonců pro většinu úhlů jde o postup založený na pravoúhlých trojúhelnících. Na druhou stranu jde o postup velmi názorný a umožňující definovat úhly v rozsahu 0 – 2 π a nikoli jen 0 – π /2 radiánů, jako při předchozím postupu. Rovnice jednotkové kružnice je:

Na jednotkovou kružnici jsou vynášeny orientované úhly θ tak, že jejich vrchol je ve středu kružnice a počáteční rameno je totožné s kladnou (pravou) poloosou vodorovné osy souřadnic. Jsou-li velikosti těchto úhlů kladné (větší než nula) je úhel orientovaný proti směru otáčení hodinových ručiček. Jsou-li záporné je úhel orientován ve směru otáčení. Druhé rameno úhlu protíná jednotkovou kružnici v bodě, jehož souřadnice v dané soustavě jsou [x,y]. Úsečka daná počátkem souřadné soustavy a tímto bodem je přeponou trojúhelníka, jehož odvěsny mají délku x a y. Protože má tato přepona délku 1, tak platí: a . Pro úhly větší než 2π, nebo menší než −2π, se celkem jednoduše pokračuje v otáčení ramena úhlu kolem středu kružnice. Pak se ovšem hodnoty funkcí sinus a kosinus začnou opakovat – říkáme, že tyto funkce jsou periodické s periodou 2π (360°) a platí:

kde θ je libovolný úhel a k libovolné celé číslo.

Nejmenší periodou funkcí sin, cos, sec a cosec je plný úhel – tedy 2π radiánů nebo 360 stupňů. Nejmenší periodou funkcí tg a cotg je úhel přímý – π nebo 180°.

Možná konstrukce hodnot jednotlivých goniometrických funkcí

Zatímco funkce sinus a kosinus lze sestrojit takto jednoduchým způsobem, konstrukce hodnot ostatních funkcí je o něco složitější. Běžně se používá ještě konstrukce funkcí tangens a kotangens, i když se v českých učebnicích matematiky používá postup trochu jiný, než je ten na sousedním obrázku.

Řady

Aproximace funkce sinus (modře) pomocí Taylorova polynomu sedmého stupně (růžově)

Za pomoci geometrie a vlastností limit lze ukázat, že derivace sinu je kosinus a derivace kosinu je −sinus. Potom lze pomocí Taylorových řad vyjádřit sinus a kosinus pro všechna komplexní čísla x takto:

Polynomy pro další goniometrické funkce jsou:

, kde
, kde

Diferenciální rovnice

Jak funkce sinus, tak i kosinus jsou výsledkem diferenciální rovnice . To tedy znamená, že pro obě tyto funkce platí, že jejich druhá derivace je rovna minus dané funkci. Ve dvourozměrném vektorovém prostoru V obsahujícím všechna řešení této rovnice je sinus právě to řešení splňující počáteční podmínky y(0) = 0 a y′(0) = 1 a kosinus řešení s počátečními podmínkami y(0) = 1 a y′(0) = 0. Protože jsou sinus a kosinus lineárně nezávislé, tvoří bázi vektorového prostoru V. Tento způsob definice těchto goniometrických funkcí je v zásadě ekvivalentní definici přes Eulerovu formuli.

Funkce tangens je řešením rovnice pro počáteční podmínku y(0) = 0.

Pomocí vlastností

Existuje právě jedna dvojice funkcí s a c s těmito vlastnostmi: :

, pro .

Výpočty hodnot

V současnosti se většina lidí vyhne počítání hodnot goniometrických funkcí díky dostupnosti počítačů a vědeckých kalkulátorů. Historicky se hodnoty goniometrických funkcí určovaly interpolací hodnot z předpočítaných tabulek obsahujících jejich hodnoty pro nejdůležitější úhly. Tyto tabulky vznikaly se zrodem samotných goniometrických funkcí a byly sestavovány opakovaným užitím sčítání a půlení známých úhlů.

Počítače užívají k výpočtu goniometrických funkcí několika metod. Obvyklým postupem je kombinace polynomiální aproximace (pomocí Taylorových nebo Maclaurinových polynomů) a vyhledávání v tabulce již připravených úhlů. Nejprve je tedy nalezena hodnota blízkého úhlu a přesná hodnota je dopočítána vhodným aproximačním polynomem. Tak ovšem mohou postupovat výkonnější stroje vybavené jednotkou pro operace s plovoucí řádovou čárkou, v jednodušších zařízeních se používá algoritmus zvaný CORDIC, který je v tomto případě efektivnější. Obě metody jsou kvůli lepšímu výkonu často součástí počítačového hardware.

Přesně určit hodnoty goniometrických funkcí pro všechny násobky 60° a 45° lze následujícím způsobem:

Mějme rovnoramenný pravoúhlý trojúhelník s délkami odvěsen a=b=1; úhly při přeponě jsou stejné a tedy rovné (45°). Pak podle Pythagorovy věty:

a tedy ovšem

Goniometrické funkce úhlů radiánů (60°) a radiánů (30°) se určí pomocí rovnostranného trojúhelníka se stranami délky 1. Všechny jeho úhly jsou rovny radiánů (60°). Když ho rozdělíme na poloviny, získáme pravoúhlý trojúhelník s úhly o velikostech a . Jeho kratší odvěsna má délku , delší a přepona délku 1. Pak tedy:


Přesně určit hodnoty goniometrických funkcí pro všechny násobky 3° lze následujícím způsobem.

Výchozí hodnotu (36°) lze vypočítat ze vztahu velikosti opsané kružnice ku straně pravidelného pětiúhelníka. Tento vztah má tvar:

Úhel daný polopřímkami, které vycházející ze středu pětiúhelníka a protínající dva jeho sousední vrcholy, má hodnotu (72°). Pro jeho polovinu (36°) pak platí:

Hodnota cos 36° se vypočítá ze vztahu:

Se znalostí hodnot pro sinus a kosinus 30° a 45° pomocí vztahů pro sinus součtu (resp. rozdílu) úhlů lze postupně vypočítat hodnoty sinus pro 6, 9 a pak 3 stupně. Další hodnoty sinus násobku tří lze adekvátně odvodit. Obdobně to platí pro hodnoty kosinus.

Historie

Snad jako první se studiu goniometrických funkcí a počítání jejich hodnot věnoval HipparchosNikaje (180125 př. n. l.), který porovnával délky oblouku kružnice při daném středovém úhlur) s délkami jim odpovídajících tětiv (2r sin(α/2)). O něco později, ve 2. století našeho letopočtu, Ptolemaios obohatil tyto znalosti ve svém díle Almagest o odvození vzorců odpovídajících těm dnešním pro součet a rozdíl úhlů: sin(α + β) a sin(α − β). Dokázal také odvodit vzorec pro úhel poloviční (sin2(α/2) = (1 − cos(α))/2), díky čemuž mohl sestavit tabulky pro úhly s prakticky libovolnou přesností. Do dnešních dnů se však ani jedny tabulky nedochovaly.

K dalšímu pokroku v oblasti goniometrie došlo v Indii. Ve spise Siddhantas ze 45. století byla poprvé uvedena definice sinu jako poměru mezi polovinou úhlu a polovinou sečny. Tento spis také obsahuje první dodnes dochované tabulky hodnot sinu a funkce (1 − cos) pro úhly v 3,75stupňových intervalech mezi 0 a 90 stupni. Byl později přeložen a podstatně rozšířen Araby, kteří zhruba v 10. století, v díle Abu'l-Wefy, již používali šest goniometrických funkcí a měli tabulky hodnot funkcí sinus a tangens s přesností na 8 desetinných míst pro úhly vzdálené od sebe o čtvrtinu stupně.

Dnes používané slovo sinus pochází z latinského výrazu pro záhyb nebo zátoku. Vzniklo nesprávným překladem ze sanskrtu, z tamního slova jiva (nebo jya). jiva (původně ardha-jiva), ve významu „půltětiva“, byla v díle Aryabhatiya6. století Araby přepsána jako jiba (جب). Evropskými překladateli (Robert of Chester a Gerardo da Cremona) z Toleda však bylo toto slovo ve 12. století zaměněno se slovem jaib (جب) znamenajícím „zátoka“. Důvodem jejich omylu byl stejný arabský zápis obou slov.

Všechny dosavadní práce se na goniometrii dívaly jako na doplněk astronomie, snad prvním pojednáním zabývajícím se goniometrií samostatně bylo Regiomontanovo De triangulis omnimodus z roku 1464 a později také jeho Tabulae directionum (kde se objevila, zatím nepojmenovaná, funkce tangens).

Rhaeticova práce Opus palatinum de triangulis konečně definovala goniometrické funkce přes pravoúhlé trojúhelníky namísto tětiv kružnic a obsahovala tabulky pro šestici goniometrických funkcí. Práci dokončil Rhaeticův student Valentin Otho v roce 1596.

Analytický náhled na goniometrické funkce vytvořil Leonhard Euler roku 1748 ve spise Introductio in analysin infinitorum, kde tyto funkce definoval pomocí nekonečných řad a kde také představil Eulerův zápis komplexních čísel: eix = cos(x) + i sin(x). Používal také (téměř) dnešní zkratky pro funkce: sin., cos., tang., cot., sec., a cosec..

Vybrané vzorce z oblasti goniometrie

Následující vzorce jsou platné tam, kde mají dané formule smysl

  • Záporné hodnoty úhlů
  • Vzájemné vztahy mezi goniometrickými funkcemi stejného úhlu
  • Goniometrické funkce součtu a rozdílu (jinak také součtové vzorce goniometrických funkcí)
  • Součet a rozdíl goniometrických funkcí
  • Součiny goniometrických funkcí
  • Dvojnásobný úhel (K odvození goniometrických funkcí vícenásobného argumentu používáme Moivreovy věty)
  • Poloviční úhel
  • Mocniny goniometrických funkcí

Hodnoty funkcí ve vybraných úhlech

StupněRadiánySinusKosinusTangensKotangens
0
30
45
60
90
120
135
150
180
210
225
240
270
300
315
330


StupněRadiánySinusKosinus

V některých výše uvedených vzorcích lze matematický výraz lze nahradit výrazem a výraz výrazem . Všechny hodnoty výrazů pod odmocninami uvedené v tabulce vystupují jako absolutní hodnota, musí být chápany jako kladné hodnoty. (Pro přehlednost vzorců nejsou použity závorky absolutní hodnota.)
Hodnoty sinus a kosinus násobků 3° pro hodnoty od 45° do 90° lze snadno odvodit pomocí vztahů:

Trigonometrické věty

Odkazy

Související články

Literatura

  • Rektorys, K. a spol.: Přehled užité matematiky I.. Prometheus, Praha, 2003, 7. vydání. ISBN 80-7196-179-5

Externí odkazy

Média použitá na této stránce

Sine cosine one period.svg
SINE and COSINE-Graph of the sine- and cosine-functions sin(x) and cos(x). One period from 0 to 2π is drawn. x- and y-axis have the same units. All labels are embedded in "Computer Modern" font. The x-scale is in appropriate units of pi.
Pravouhly trojuhelnik C.png
(c) Rawac, CC BY-SA 3.0
Pravoúhlý trojúhelník s pravým úhlem při vrcholu C. Vytvořeno v programu GEONExT.
Circle cos sin.gif
We have the unit circle (with radius = 1) in green, placed at the origin at the bottom right.

In the middle of this circle, in yellow, is represented the angle theta (θ). This angle is the amount of counter-clockwise rotation around the circle starting from the right, on the x-axis, as illustrated. An exact copy of this little angle is shown at the top right, as a visual illustration of the definition of θ.

At this angle, and starting at the origin, a (faint) green line is traced outwards, radially. This line intersects the unit circle at a single point, which is the green point spinning around at a constant rate as the angle θ changes, also at a constant rate.

The vertical position of this point is projected straight (along the faint red line) onto the graph on the left of the circle. This results in the red point. The y-coordinate of this red point (the same as the y-coordinate of the green point) is the value of the sine function evaluated at the angle θ, that is:

y coordinate of green point = sin θ

As the angle θ changes, the red point moves up and down, tracing the red graph. This is the graph for the sine function. The faint vertical lines seen passing to the left are marking every quadrant along the circle, that is, at every angle of 90° or π/2 radians. Notice how the sine curve goes from 1, to zero, to -1, then back to zero, at exactly these lines. This is reflecting the fact sin(0) = 0, sin(π/2) =1, sin(π) = 0 and sin(3π/ 2) -1

A similar process is done with the x-coordinate of the green point. However, since the x-coordinate is tilted from the usual convention to plot graphs (where y = f(x), with y vertical and x horizontal), an “untilt” operation was performed in order to repeat the process again in the same orientation, instead of vertically. This was represented by a “bend”, seen on the top right.

Again, the green point is projected upwards (along the faint blue line) and this “bent” projection ends up in the top graph’s rightmost edge, at the blue point. The y-coordinate of this blue point (which, due to the “bend” in the projection, is the same as the x-coordinate of the green point) is the value of the cosine function evaluated at the angle θ, that is:

x coordinate of green point = cos θ
The blue curve traced by this point, as it moves up and down with changing θ, is the the graph of the cosine function. Notice again how it behaves at it crosses every quadrant, reflecting the fact cos(0) = 1, cos(π/2) = 0, cos(π) = -1 and cos(3π/2) = 0.
Einheitskreis Ani.gif
Autor: Original uploader was Ralf Pfeifer at de:Wp, Licence: CC-BY-SA-3.0
Die Animation zeigt die Ableitung der trigonometrischen Funktionen sin, cos und tan am Einheitskreis
Circle-trig6.svg
Autor:
Původní dílo:
Vektory:
, Licence: CC-BY-SA-3.0
This is a graphical construction of the various trigonometric functions from a chord AD (angle θ) of the unit circle centered at O. In addition to the modern trigonometric functions sin (sine), cos (cosine), tan (tangent), cot (cotangent), sec (secant), and csc (cosecant), the diagram also includes a few trigonometric functions that have fallen into disuse: chord, versin (versine or versed sine), exsec (exsecant), cvs (coversine), and excsc (excosecant).
Unit circle angles.svg
Jednotková kružnice.
Taylorsine.svg
The sine function and its 7th-degree Taylor polynomial, . Made by english wikipedia user Ktims. Copied here from english wikipedia (Link)