Hvězdný vítr

Hvězdný vítr společně s tlakem záření způsobuje rozpínání planetárních mlhovin, jako např. NGC 6751

Hvězdný vítr je ustálený proud částic směřující z povrchu hvězdy do mezihvězdného prostředí. Prostřednictvím hvězdného větru může hvězda ztratit podstatnou část své hmotnosti.

Rozeznáváme tři typy hvězdných větrů:

  • koronální vítr
  • čarami urychlovaný vítr
  • prachem urychlovaný vítr

Koronální vítr

Koronální vítr se vyskytuje u chladných hvězd hlavní posloupnosti (mezi něž patří i naše Slunce). Tyto hvězdy mají horkou korónu. Velikost tepelné rychlosti nejrychlejších částic koróny převyšuje únikovou rychlost z povrchu hvězdy. Tyto částice unikají z blízkosti hvězdy a vytvářejí hvězdný vítr koronálního typu. Z makroskopického pohledu je koronální hvězdný vítr důsledkem rozpínání horké koróny.

Tento typ větru pocházející ze Slunce se nazývá sluneční vítr.

Koronální vítr je možné popsat pomocí stacionárních hydrodynamických rovnic za předpokladu sférické symetrie. Rovnice kontinuity má v tomto případě tvar

kde je poloměr, radiální rychlost větru a jeho hustota. Integrací je možné získat vztah pro rychlost ztráty hmoty, množství hmoty kterou hvězda ztrácí za jednotku času,

Se znalostí hustoty a rychlosti větru od hvězdy tedy můžeme určit množství hmoty, kterou hvězda ztrácí za jednotku času. Slunce ztrácí slunečním větrem své hmoty. Rychlost ztráty hmoty koronálním větrem závisí na věku hvězdy, mladé chladné hvězdy tak ztrácejí hmotu až o několik řádů rychleji než Slunce.

Nejjednodušším modelem koronálního hvězdného větru je tzv. Parkerův model hvězdného větru. Pokud předpokládáme, že hvězdný vítr je izotermický, pak za předpokladu sférické symetrie je možné pohybovou rovnici hvězdného větru zapsat jako

kde je izotermická rychlost zvuku, je gravitační konstanta a hmotnost hvězdy. Členy na pravé straně představují gradient tlaku plynu, který vede k expanzi větru a gravitační zrychlení. S užitím rovnice kontinuity můžeme tuto rovnici přepsat jako

Vidíme, že hvězdný vítr dosahuje rychlosti zvuku v bodě, kde rychlost zvuku rovna polovině únikové rychlosti,

Koronální hvězdný vítr je tedy možný pouze v oblastech, kde je rychlost zvuku srovnatelná s únikovou rychlostí, tedy v koróně hvězd.

Čarami urychlovaný vítr

Mnohé horké hvězdy jsou natolik zářivé, že velikost zářivé síly způsobená absorpcí záření v čarách těžších prvků je vyšší než velikost síly gravitační. Látka povrchových vrstev hvězd je působením zářivé síly urychlována na rychlosti vyšší než je úniková rychlost a opouští hvězdu. Pro urychlování hvězdného větru horkých hvězd jsou podstatné zejména těžší prvky, například železo, uhlík, dusík, a kyslík.

Prachem urychlovaný vítr

Chladní obři a veleobři produkují hvězdný vítr v důsledku hvězdných pulzací a absorpce záření na prachových částicích. Pulzacemi se látka povrchových vrstev dostává do poměrně velkých vzdáleností od hvězdy. V těchto oblastech je teplota látky natolik nízká, že v ní může docházet ke kondenzaci prachových částic. Tyto částice jsou schopny natolik efektivně pohlcovat záření hvězdy, že zářivá síla vzniklá v důsledku této absorpce je schopna vznést tyto částice z povrchu hvězdy do mezihvězdného prostředí.

Související články

Externí odkazy

Literatura

  • Parker, E. N.: Dynamics of the Interplanetary Gas and Magnetic Fields, 1958, Astrophysical Journal, 128, 664

Média použitá na této stránce

Glowing Eye of NGC 6751 - GPN-2000-000891.jpg
Astronomers using NASA's Hubble Space Telescope have obtained images of the strikingly unusual planetary nebula, NGC 6751. Glowing in the constellation Aquila like a giant eye, the nebula is a cloud of gas ejected several thousand years ago from the hot star visible in its center.

The Hubble observations were obtained in 1998 with the Wide Field and Planetary Camera 2 (WFPC2) by a team of astronomers led by Arsen Hajian of the U.S. Naval Observatory in Washington, DC. The Hubble Heritage team, working at the Space Telescope Science Institute in Baltimore, has prepared this color rendition by combining the Hajian team's WFPC2 images taken through three different color filters that isolate nebular gases of different temperatures.

The nebula shows several remarkable and poorly understood features. Blue regions mark the hottest glowing gas, which forms a roughly circular ring around the central stellar remnant. Orange and red show the locations of cooler gas. The cool gas tends to lie in long streamers pointing away from the central star, and in a surrounding, tattered-looking ring at the outer edge of the nebula.

The origin of these cooler clouds within the nebula is still uncertain, but the streamers are clear evidence that their shapes are affected by radiation and stellar winds from the hot star at the center.