Hydrid sodný
Hydrid sodný | |
---|---|
Model krystalové mřížky hydridu sodného | |
Obecné | |
Systematický název | hydrid sodný |
Anglický název | Sodium hydride |
Německý název | Natriumhydrid |
Sumární vzorec | NaH |
Vzhled | bezbarvá až šedá krystalická látka |
Identifikace | |
Registrační číslo CAS | 7646-69-7 |
EC-no (EINECS/ELINCS/NLP) | 231-587-3 |
Indexové číslo | 001-003-00-X |
PubChem | 24758 |
SMILES | [H-].[Na+] |
InChI | 1S/Na.H |
Vlastnosti | |
Molární hmotnost | 23,997 71 g/mol |
Teplota tání | 800 °C (rozklad) |
Teplota rozkladu | 260 °C (od povrchu) |
Hustota | 0,92 g/cm3 (20 °C) |
Index lomu | 1,470 |
Struktura | |
Krystalová struktura | krychlová |
Hrana krystalové mřížky | a=487,9 pm |
Termodynamické vlastnosti | |
Standardní slučovací entalpie ΔHf° | −57,3 kJ/mol |
Standardní slučovací Gibbsova energie ΔGf° | −38 kJ/mol |
Bezpečnost | |
[1] Nebezpečí[1] | |
H-věty | H260 |
R-věty | R15 |
S-věty | (S2) S7/8 S24/25 S43 |
NFPA 704 | |
Není-li uvedeno jinak, jsou použity jednotky SI a STP (25 °C, 100 kPa). | |
Některá data mohou pocházet z datové položky. |
Hydrid sodný je anorganická sloučenina vodíku a sodíku s empirickým vzorcem NaH. Používá se především jako silná zásada v organické syntéze. NaH patří mezi solné (iontové) hydridy, je složen z iontů Na+ a H−; mezi molekulárnější hydridy patří boran, methan, amoniak nebo voda. Hydrid sodný není rozpustný v organických rozpouštědlech (rozpouští se však v roztaveném sodíku), což je konzistentní s tím, že iont H− zatím není v roztoku znám. Vzhledem k této nerozpustnosti probíhají všechny reakce na povrchu tuhé látky.
Vlastnosti a struktura
NaH vzniká přímou reakcí vodíku a kapalného sodíku.[2] Čistý hydrid sodný je bezbarvý, běžné vzorky bývají šedé.
Hydrid sodný, podobně jako hydridy ostatních alkalických kovů (LiH, KH, RbH a CsH), má krystalovou strukturu jako chlorid sodný. Každý iont Na+ je obklopen šesti centry H− v osmistěnné geometrii. Iontové poloměry, souzeno podle vzdáleností Na-H a Na-F, iontů H− (146 pm v NaH) a F− (133 pm) jsou srovnatelné.[3]
Použití v organické syntéze
Jako silná zásada
NaH je zásada se širokým spektrem použití v organické chemii.[4] Je schopen deprotonovat velkou škálu (i slabých) Brønstedových kyselin na příslušné sodné deriváty. Typické „snadné“ substráty obsahují vazby O-H, N-H či S-H; sem patří například alkoholy, fenoly, pyrazoly a thioly.
Nejvýznamnějším použitím NaH je deprotonace uhlíkatých kyselin, například 1,3-dikarbonylu a analogů, kupříkladu esterů kyseliny malonové. Výsledné sodné deriváty lze alkylovat. NaH se široce využívá pro kondenzační reakce karbonylových sloučenin pomocí Dieckmannovy, Stobbeovy, Darzensovy a Claisenovy kondenzace. Mezi další uhlíkaté kyseliny náchylné na deprotonaci pomocí NaH patří sulfoniové soli a dimethylsulfoxid. NaH se používá k přípravě ylidů síry, které se zase používají ke konverzi ketonů na epoxidy.
Jako redukční činidlo
NaH redukuje některé sloučeniny hlavní skupiny, ovšem analogická reaktivita v organické chemii není známa. Fluorid boritý s NaH reaguje za vzniku diboranu a fluoridu sodného:[2]
- 6 NaH + 2 BF3 → B2H6 + 6 NaF
Redukuje také vazby Si-Si v disilanech a S-S v disulfidech.
Vysoušedlo
Protože rychle a nezvratně reaguje s vodou, používá se NaH k vysoušení některých organických rozpouštědel. Častější je však použití jiných sloučenin, například hydridu vápenatého.
Ukládání vodíku
Hydrid sodný byl navržen pro použití k ukládání vodíku pro palivové články ve vozidlech. Hydrid by byl uložen v plastických peletách, které by se v přítomnosti vody drtily, čímž by se uvolňoval vodík.[5]
Nakládání s hydridem sodným
Hydrid sodný je prodáván mnoha dodavateli obvykle jako směs 60 % NaH v minerálním oleji. S takovou směsí se bezpečněji zachází a snadněji se váží. Čistý bílý NaH se získá vypláchnutím oleje pentanem nebo tetrahydrofuranem (THF); je třeba opatrnosti, protože oplachová kapalina obsahuje stopy NaH, které se mohou na vzduchu vznítit. Reakce s NaH vyžadují inertní atmosféru, například dusíkovou nebo argonovou. Typicky se používá suspenze NaH v THF, protože jde o látku odolávající deprotonaci, ovšem rozpouštějící většinu organosodných sloučenin.
Bezpečnost
NaH se může na vzduchu vznítit, zvlášť při kontaktu s vodou, kdy se uvolňuje (rovněž hořlavý) vodík. Hydrolýzou vzniká žíravý hydroxid sodný. Proto se také (viz výše) hydrid sodný uchovává v oleji.[6]
Reference
V tomto článku byl použit překlad textu z článku Sodium hydride na anglické Wikipedii.
- ↑ a b Sodium hydride. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-23]. Dostupné online. (anglicky)
- ↑ a b Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN 0-12-352651-5.
- ↑ Wells, A.F. (1984). Structural Inorganic Chemistry, Oxford: Clarendon Press
- ↑ Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. DOI:10.1002/047084289 .
- ↑ J. Philip DiPietro; EDWARD G. SKOLNIK. Analysis of the Sodium Hydride-based Hydrogen Storage System being developed by PowerBall Technologies, LLC [online]. US Department of Energy, Office of Power Technologies, October 1999 [cit. 2009-09-01]. Dostupné online. (anglicky)
- ↑ MSDS 60% NaH in mineral oil
Literatura
- VOHLÍDAL, JIŘÍ; ŠTULÍK, KAREL; JULÁK, ALOIS. Chemické a analytické tabulky. 1. vyd. Praha: Grada Publishing, 1999. ISBN 80-7169-855-5.
Externí odkazy
- Obrázky, zvuky či videa k tématu Hydrid sodný na Wikimedia Commons
Média použitá na této stránce
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for flammable substances
The "fire diamond" as defined by NFPA 704. It is a blank template, so as to facilitate populating it using CSS.
Sodium hydride 3D chemical structure