Ionizující záření
Ionizující záření je souhrnné označení pro záření, jehož kvanta mají energii postačující k ionizaci atomů nebo molekul ozářené látky. Ionizující záření vzniká při radioaktivním rozpadu, vlivem kosmického záření nebo jej lze vytvořit uměle. Působení ionizujícího záření poškozuje organickou tkáň a může způsobit mutace, rakovinu, nemoc z ozáření i smrt. Využití ionizujícího záření je ve více lidských oborech, například v lékařství nebo výzkumu. K měření ionizujícího záření se využívají dozimetry.[1]
Charakteristika
Pro neutronové záření a záření beta je kvantifikace obtížnější, neboť i velmi pomalé částice (v případě neutronů) vstupují do jader a vyvolávají sekundární ionizaci prostřednictvím jaderných reakcí. Obdobný případ nastává v případě pozitronů, anihilujících s elektrony za vzniku velmi tvrdého záření γ.
S ohledem na charakter ionizačního procesu je možno ionizující záření rozdělit na přímo ionizující a nepřímo ionizující. Přímo ionizující záření je tvořeno nabitými částicemi (protony, elektrony, pozitrony atp.), které mají dostatečnou kinetickou energii k tomu, aby mohly vyvolat ionizaci. Nepřímo ionizující záření zahrnuje nenabité částice (neutrony, fotony atp.), které prostředí samy neionizují, ale při interakci s prostředím uvolňují sekundární přímo ionizující částice. Ionizace prostředí je zde tedy způsobena těmito sekundárními částicemi. Vznik ionizujícího záření souvisí se strukturou atomů a jejich jader.
Za energetickou hranici ionizujícího záření se obvykle považuje energie 12 eV[2] (tj. vlnová délka 100 nm) pro α, β a γ záření.
Jednou z veličin charakterizujících ionizující záření je lineární přenos energie.
Druhy ionizujícího záření
- Záření alfa (α) – samovolné odštěpení stabilních α-částic, tj. jader helia
- Záření beta (β) – záření urychlených elektronů nebo pozitronů, probíhá u jader s nadbytkem neutronů a dochází zde k tomu, že vzniklý neutron zůstává v jádře a elektron částice beta jádro opustí
- Záření gama (γ) – energetické fotony, tj. druh elektromagnetického záření
- Rentgenové záření (X) – elektromagnetické záření, které se částečně kryje se zářením gama
- Neutronové záření (n) – proud volných neutronů
- Kosmické záření - energeticky nabitá jádra, jako jsou protony, jádra helia a vysoce nabitá jádra těžších prvků (anglicky HZE ions).[3]
Záření se dělí na přímo ionizující, které tvoří proud elektricky nabitých částic (alfa, beta), a nepřímo ionizující, kde neutrální částice interaguje a k ionizaci dochází druhotně z výsledku této interakce, například elektrony uvolněnými při fotoelektrickém jevu.
Dále lze ionizační záření dělit na elektromagnetické záření, které tvoří proud nehmotných fotonů, a záření tvořící proud hmotných částic, jakými jsou jádra helia, elektrony, pozitrony a neutrony.
Zdroje ionizujícího záření
Přírodní zdroje
- kosmické záření
- sluneční záření
- přírodní radioizotopy
Umělé zdroje
- Urychlovače částic - Cyklotron, Synchrotron, případně lineární urychlovače mezi něž patří i rentgenky (Rentgen, CT, mamograf) a CRT obrazovky
- Jaderné zbraně
- Jaderný reaktor
- Uměle vytvořené nestabilní chemické prvky (neptunium, plutonium, americium, kalifornium atp.)
- Zařízení pro scintilační a stopovací diagnostické metody
- Terapeutická zařízení - cesiové a kobaltové gama ozařovače, Leksellův gama-nůž
- Radiofarmaka a tracery
Účinky na živé organismy
Ionizující záření, ve formě jak dlouhodobého slabého, tak i krátkodobého intenzivního ozáření, má negativní účinky na člověka a ostatní živé organismy. Působí-li na biologický materiál, dochází k absorpci ionizujících částic nebo vlnění atomy daného materiálu. To způsobuje vyrážení elektronů z jejich orbitalů a tvorbu kladně nabitých iontů (kationtů). Ionizované části molekul se stávají vysoce reaktivními a vedou k řadě chemických reakcí, které buňku buď rovnou usmrtí, nebo vedou ke změnám genetické informace (reakce radikálů s DNA způsobuje porušení fosfodiesterových vazeb a tím zpřetrhání jejího řetězce).
Detekce a měření
Detektory ionizujícího záření se dělí podle nesené informace na detektory počtu částic (nespektrometrické detektory, určují pouze počet částic, nezjistí energii ionizačního záření) a na detektory spektrometrické (zjistí počet částic i jejich energii). Příkladem spektrometrického detektoru jsou scintilační detektory.
K měření jeho účinků se používají tyto jednotky:
Reference
V tomto článku byl použit překlad textu z článku Ionizing radiation na anglické Wikipedii.
- ↑ ZEMKOVÁ, Barbora. Jak vybrat dozimetr? Objevte tajemství měření radiace. Elektrina.cz [online]. [cit. 2019-07-23]. Dostupné online.
- ↑ Směrnice Rady 96/29/Euratom ze dne 13. května 1996, kterou se stanoví základní bezpečnostní standardy na ochranu zdraví pracovníků a obyvatelstva před riziky vyplývajícími z ionizujícího záření [online]. Rada Evropské unie, 13. 05. 1996. Dostupné online.
- ↑ Kosmické záření, měření pozadí detektoru [online]. wikiskripta.eu [cit. 2021-10-27]. Dostupné online.
Související články
Externí odkazy
- Obrázky, zvuky či videa k tématu ionizující záření na Wikimedia Commons
- Přehled použití ionizujícího záření Archivováno 16. 10. 2007 na Wayback Machine.
- Ionizující záření kolem nás - proč je člověk vystaven radiaci po celý život
Média použitá na této stránce
The new supplementary ionizing radiation warning symbol launched on 15 February 2007 by the International Atomic Energy Agency (IAEA) and the International Organization for Standardization (ISO). Contains radiating waves, a skull and crossbones and a running person, on a red triangle.
The symbol is intended to be used inside equipment housings, as a warning to stop dismantling a device and get away from it. The symbol is not intended to be visible during normal use of the equipment. It is also not intended for use on building doors or walls, vehicles, or transportation containers.
For further information, see the 2007 press-release New Symbol Launched to Warn Public About Radiation Dangers Archived and PDF file depicting the symbol: http://www.iaea.org/NewsCenter/News/PDF/newradsymbol.pdf - Archived Link.
Internationally recognized symbol. Warning sign of Ionizing Radiation.
Autor: Stahlkocher, Licence: CC BY-SA 3.0
An early Crookes type X-ray tube. The electrode to the right is the cathode, which focused a narrow beam of electrons on the platinum or tungsten target at the center of the angled copper anode to the left, creating x-rays, which radiated downwards. The sausage-shaped bulb at top is a 'softener'. Crookes tubes required a certain amount of residual gas in them to function properly. As time passed, the gas was absorbed by the surfaces inside the tube, causing them to quit working. Applying a current through the 'softener' heated a mantle inside, releasing gas to restore the tube to operation. These types of x-ray tubes were used from the 1890s to about 1920.
Autor: Anynobody~commonswiki, Licence: CC BY-SA 4.0
žiarenie alfa, beta, gama a neutrónové a ich prenikavosť.