Jádro (lineární algebra)
V lineární algebře se termínem jádro lineárního zobrazení označuje podprostor tvořený vzory nulového vektoru.
Jádrem matice se nazývá množina všech řešení homogenní soustavy lineárních rovnic, kde daná matice tvoří matici soustavy.[1]
Pro jádro se používá též název nulový prostor. Značí se (z anglického kernel - „jádro, pecka“ nebo „zrno“, resp. německého das Kern), případně , , , apod.
Dimenze jádra se nazývá nulita[pozn. 1][2] nebo defekt[3].
Jádro se využívá při popisu množiny řešení homogenních i nehomogenních soustav lineárních rovnic.
Definice
Je-li dána matice typu nad tělesem (např. reálnými či komplexními čísly), potom jádrem matice se nazývá množina všech řešení homogenní soustavy lineárních rovnic . Značí se a formálně je dáno předpisem:
Obecněji, je-li dáno lineární zobrazení mezi dvěma vektorovými prostory a , potom jádro zobrazení je vektorový podprostor tvořený všemi vektory z takovými, že , kde označuje nulový vektor prostoru . Formálně:
- .
Jádro matice se shoduje s jádrem lineárního zobrazení daného předpisem .
Ukázka
Rovnici v oboru reálných čísel lze zapsat jako homogenní soustavu o jedné lineární rovnici a dvou reálných neznámých s maticí soustavy .
Jádrem této matice je
- ,
neboli množina bodů v s oběma souřadnicemi shodnými. Geometricky tvoří tyto body osu prvního a třetího kvadrantu.
K uvedené matici lze přiřadit zobrazení předpisem . Jádrem zobrazení je množina vzorů nulového vektoru z cílového prostoru (zde čísla , protože uvedená soustava má jen jednu rovnici). Tvoří ji stejná množina bodů (přímka) jako jádro matice :
Vlastnosti
- Lineární zobrazení podle definice zachovává součty a skalární násobky, a proto je jádro je uzavřené na součty a skalární násobky. Jádro zobrazení proto tvoří vektorový podprostor prostoru :
- Speciálně, nulový vektor prostoru vždy patří do jádra.
- Pokud se obrazy dvou vektorů v lineárním zobrazení shodují, patří jejich rozdíl do jádra :
Popis řešení soustav
- Totéž v termínech řešení soustav: Jsou-li a dvě řešení soustavy lineárních rovnic , pak je řešením soustavy .
- Je-li řešením soustavy a je řešení související homogenní soustavy , pak je také řešením soustavy .
- V důsledku lze všechna řešení nehomogenní soustavy popsat pomocí jednoho partikulárního řešení a jádra:
- Věta: Je-li jedno pevně zvolené partikulární řešení soustavy lineárních rovnic nad tělesem , pak množina všech řešení této soustavy je afinní podprostor .
- Důkaz: Je-li libovolné řešení soustavy , pak , a proto . Naopak pro libovolné je řešením soustavy .
Ortogonalita
V prostoru odpovídá maticový součin standardnímu skalárnímu součinu.
- Každý vektor jádra matice je proto kolmý na každý její řádek a v důsledku i na každý vektor z řádkového prostoru.
- Jádro matice je ortogonálním doplňkem řádkového prostoru a naopak.
- Obecněji, je-li unitární prostor a je jeho podprostor, potom jádro kolmé projekce je ortogonální doplněk podprostoru ve .
Výpočet
Řešení homogenní soustavy lineárních rovnic
Elementární úpravy nemění množinu řešení soustavy, čili ani jádro matice. Proto je možné danou matici převést do odstupňovaného tvaru a poté zpětnou substitucí popsat množinu řešení neboli jádro.
Ukázka
Jádro reálné matice
obsahuje všechny vektory , pro něž platí , neboli:
Uvedená rovnice s maticovým součinem odpovídá homogenní soustavě lineárních rovnic v neznámých , a :
Stejnou soustavu lze také zapsat rozšířenou maticí soustavy a tu pomocí Gaussovy–Jordanovy eliminace elementárnímu úpravami převést na redukovaný odstupňovaný tvar:
Elementární úpravy zachovávají množinu řešení soustavy, čili i jádro matice . Přepsáním výsledné matice do rovnic se získá:
Prvky jádra lze dále vyjádřit v parametrické vektorové formě takto:
Protože je volná proměnná která může nabývat libovolnou hodnotu v oboru reálných čísel, lze řešení vyjádřit stejně dobře jako:
přičemž parametr byl získán substitucí .
Jádro je přesně řešením těchto rovnic (v tomto případě přímka v procházející počátkem a bodem . Uvedený bod je jednou z možných bází jádra . Nulita matice je tudíž rovna 1.
Přímý výpočet Gaussovou eliminací
Jádro matice lze určit i tak, že se z její transpozice vytvoří bloková matice připsáním jednotkové matice a tato matice se Gaussovou–Jordanovou eliminací převede na redukovaný odstupňovaný tvar .
Bázi jádra pak tvoří ty řádky matice , jimž v matici předcházejí samé nuly.
Korektnost uvedeného postupu vyplývá z toho, že matice reprezentuje úpravy použité během eliminace, a proto platí . každý z těchto vybraných řádků matice má nulový součin se sloupci , čili i s řádky , a proto patří do hledaného jádra . Protože je regulární, jsou tyto vektory lineárně nezávislé. Podle věty o dimenzích jádra a obrazu odpovídá jejich počet dimenzi jádra, a proto tvoří jeho bázi.
Ukázka
Pro zadání z předchozí ukázky odpovídá převod blokové matice na redukovaný odstupňovaný tvar výpočtu:
Pouze poslednímu řádku matice předcházejí v samé nuly. Tento vektor tvoří bázi jádra , což lze doložit součiny:
Uvedené součiny též ilustrují skutečnost, že u reálných matic jsou všechny vektory jádra kolmé na všechny vektory z řádkového prostoru dané matice, neboť tyto maticové součiny odpovídají standardnímu skalárnímu součinu na . Konkrétně, jádro odpovídá přímce a řádkový prostor je rovina procházející počátkem, která je kolmá na tuto přímku.
Součet hodnosti matice s její nulitou, neboli rovnost , dává počet sloupců matice , což zároveň ilustruje větu o dimenzích jádra a obrazu.
Numerické záležitosti
Způsob a stabilita výpočtu jádra na počítači závisí na druhu koeficientů.
Přesné koeficienty
Pokud jsou koeficienty matice přesně danými čísly, lze odstupňovaný tvar matice vypočítat pomocí Bareissova algoritmu efektivněji než pomocí Gaussovy eliminace. Ještě efektivnější je použít modulární aritmetiku a čínskou větu o zbytcích, která výpočet redukuje na několik podobných úlohu nad konečnými tělesy, čímž se ušetří režie vyvolaná nelinearitou časové složitosti celočíselného násobení.
Pro koeficienty v konečném tělese funguje Gaussova eliminace dobře, ale pro velké matice, které se vyskytují v kryptografii a při výpočtu Gröbnerovy báze, jsou známy algoritmy, které mají sice přibližně stejnou výpočetní složitost, ale efektivnější implementaci.
Výpočet s plovoucí desetinnou čárkou
U matic, jejichž prvky jsou čísla s plovoucí desetinnou čárkou, lze kvůli zaokrouhlovacím chybám téměř vždy předpokládat plnou řádkovou hodnosti, a to i když se jedná o aproximaci matice mnohem menší hodnosti. I pro matici s plnou hodností lze vypočítat hodnověrné jádro, jen je-li dobře podmíněná.
Dokonce i u dobře podmíněné matice plného pořadí se Gaussova eliminace nemusí chovat správně: zavádí zaokrouhlovací chyby, které mohou mít příliš velký vliv na správný výsledek. Protože výpočet jádra matice je speciálním příkladem řešení soustav, lze jádro vypočítat pomocí libovolného z různých algoritmů určených k řešení homogenních soustav lineárních rovnic.
Odkazy
Poznámky
- ↑ Termín nulita matice zavedl roku 1882 pro čtvercové matice J. J. Sylvester, viz MARTINA, Štěpánová. Počátky teorie matic v Českých zemích a jejich ohlasy. 1.. vyd. Praha: Matfyzpress, 2016. 473 s. ISBN 978-80-7378-254-2. S. 27.
Reference
V tomto článku byl použit překlad textu z článku Kernel (linear algebra) na anglické Wikipedii.
- ↑ BEČVÁŘ, Jindřich. Lineární algebra. 1.. vyd. Praha: Matfyzpress, 2019. 436 s. ISBN 978-80-7378-392-1. S. 110.
- ↑ BORŮVKA, Otakar. Základy teorie matic. [s.l.]: Academia, 1971. Dostupné online. S. 106.
- ↑ BEČVÁŘ, Jindřich. Lineární algebra. 1. vyd. Praha: Matfyzpress, 2019. 436 s. ISBN 978-80-7378-392-1. S. 114.
Literatura
- BEČVÁŘ, Jindřich. Lineární algebra. 1. vyd. Praha: Matfyzpress, 2019. 436 s. ISBN 978-80-7378-392-1.
- HLADÍK, Milan. Lineární algebra (nejen) pro informatiky. 1. vyd. Praha: Matfyzpress, 2019. 328 s. ISBN 978-80-7378-378-5. S. 39.
- OLŠÁK, Petr. Lineární algebra [online]. Praha: 2007 [cit. 2023-02-20]. Dostupné online.
- MOTL, Luboš; ZAHRADNÍK, Miloš. Pěstujeme lineární algebru [online]. [cit. 2023-02-20]. Dostupné online.
Související články
Média použitá na této stránce
Autor: Jirka Fiala, Licence: CC BY-SA 4.0
The kernel of a linear map