Kometární jádro
Kometární jádro je pevné těleso nacházející se uprostřed komety. Kometární jádro je obvykle složené z prachu, zmrazených plynů a kamene. Populárně jsou označované za „špinavé sněhové koule“. Plyny sublimují při zahřátí Sluncem a vytváří plynný obal, obklopující a následující kometární jádro jinak označovaný za koma. Síla účinkující vlivem sluneční radiace a solárního větru na koma při přiblížení komety k Slunci způsobuje vytvoření kometárního ohonu, který směřuje dál od Slunce. Typické kometární jádro vykazuje albedo 0,04. Tato hodnota je nižší než u uhlí a pravděpodobně je způsobena povrchovým prachem. Získané informace ze sond Rosetta a Philae poukazují na nepřítomnost magnetického pole v okolí jádra komety 67P/Čurjymov-Gerasimenko. Z tohoto poznatku se odhaduje, že síla magnetického pole a magnetismu obecně nehrála velkou roli v době brzké formace planetesimál.
Původ
Obecně se předpokládá původ komet, nebo také prekurzorů komet v oblasti vnější sluneční soustavy a to milióny let před zformováním planet. Jakým přesně způsobem se formují a také přesný původ komet je diskutabilní, i když se tyto procesy zdají být klíčové pro pochopení formování sluneční soustavy a také geologie. Trojrozměrné výpočetní modely poukazují na důležité strukturní znaky pozorované u kometárních jader, které nasvědčují vysvětlení postupného narůstání menších těles (kometesimál) za nízké rychlosti. V tuto chvíli upřednostňované vysvětlení procesu vzniku komet je tzv. Mlhovinová hypotéza. Podle které jsou komety zbytky původních planetesimál, tedy „základních stavebních kamenů“ z kterých ve sluneční soustavě vlivem gravitace narůstaly planety. Astronomové předpokládají původ komet z Ortova mračna a také rozptýleného disku.
Velikost
Předpokládaná velikost většiny kometárních jader se pohybuje kolem 16 km napříč. Největší komety, které se přiblížily oběžné dráze planety Saturn jsou C/2002 VQ94 (≈100 km), Hale-Bopp (≈60 km), 29P (≈30,8 km), 109P/Swift–Tuttle (≈26 km) a 28P/Neujmin (≈21,4 km). Jádro Halleyovy komety tvarem připomínající bramboru (15×8×8 km), obsahuje rovnoměrné rozvrstvení ledu a prachových částic. Během přeletu sondy Deep Space 1 v září 2001 kolem komety Borrelly. Vypozorovala sonda velikost jádra komety na (8×4×4 km) poloviční, než je jádro Halleyovy komety. Jádro komety Borrely se také podoba tvaru brambory a mělo výrazně tmavý povrch. Podobně jako u již zmíněné Halleyovy komety vycházel plyn z jádra komety Borrelly z malých oblastí, kde byly odhalené pukliny na povrchu vystavené účinkům slunečního svitu. Průměr jádra komety Hale-Bopp byl odhadnut na 60 ± 20 km. Kometa Hale-Bopp byla velmi jasná a na noční obloze viditelná pouhým okem. Neobvykle velké kometární jádro zanechávalo velké množství plynu a prachu. Jádro komety P/2007 R5 je pravděpodobně jen kolem 100–200 metrů velké v průměru. Největší těleso ze skupiny kentaurů (nestabilních, zledovatělých asteroidů) jsou odhadováno na velikost průměru kolem 250 km až 300 km. Tři největší jsou označovány jako 10199 Chariklo (258 km), 2060 Chiron (230 km), a ztracený 1995 SN55 (≈300 km). Obecná hustota známých komet byla odhadnutá na 0,6 g/cm³. Níže je seznam komet, které mají měření a odhadované parametry, velikost, hmotnost a hustotu.
Název | Velikost (km) | hustota (g/cm³) | Hmotnost (kg) |
---|---|---|---|
Halleyova kometa | 15×8×8 | 0,6 | 3×1014 |
Tempel 1 | 7,6×4,9 | 0,62 | 7,9×1013 |
19P/Borrelly | 8×4×4 | 0,3 | 2×1013 |
81P/Wild | 5,5×4,0×3,3 | 0,6 | 2,3×1013 |
67P/Čurjyumov–Gerasimenko | 0,4 | (1,0±0,1)×1013 |
Složení
Kolem 80 % jádra Halleyovy komety tvoří voda ve formě ledu a dále zmrzlý oxid uhelnatý tvoří kolem 15 %. Zbytek je složen především ze zmrzlého metanu, amoniaku a oxidu uhličitého. Výzkumníci předpokládají, že ostatní komety jsou složením velmi podobné Halleyově kometě. Jádro je při pozorování také velmi tmavého odstínu a tento poznatek vedl výzkumníky k domněnce, že většina komet je pokryta tmavou vrstvou kamení a prachu zakrývající led. Proto tento typ komet vypouští do okolí plyny jen v té době, kdy je pootočený směrem ke Slunci, které komety při oběhu zahřívá. Složení vodní páry z komety 67P/Čurjymov-Gerasimenko je dle poznatků ze sondy mise Rosetta v základu odlišné od zemské vodní páry. Poměr deuteria k vodíku ve vodní páře komety je třikrát větší, než u vodní páry na Zemi.
Struktura
Procesy pozorované na kometě 67P/Čurjymov-Gerasimenko odhalily, že z kometárního jádra uniká vodní pára. Až 80 % z toho zkondenzuje ve vrstvách pod povrchem. Pozorování indikuje, že odhalované tenké vrstvy bohaté na led blízko povrchu mohou být zapříčiněné aktivitou a změnami na kometě, tedy vrstevní globálního charakteru se nemusí nutně objevit v rané historii formování samotné komety. Měření provedená přistávacím modulem Philae na kometě 67P poukazovala na výšku povrchové vrstvy prachu na kometě až 20 cm. Pod touto povrchovou vrstvu se má nacházet velmi pevný led, nebo směs ledu a prachových částic. Pórovitost narůstá směrem k středu kometárního jádra. Většina výzkumníků předpokládala, že jádra komet se skládají z přeměněných částí menších ledových planetesimál předchozí generace. Nicméně i když tělesa mohou být spojena vlivem gravitace do jednotné části, mise Rosetta zavrhla domněnku, že by komety byly „štěrkové hromady“ z nesourodého materiálu.
Tříštivost
Některá kometární jádra se zdají vykazovat velmi velkou křehkost, alespoň to potvrdila pozorování rozdělování komet na menší části. Komety, které se rozdělily, jsou například 3D/Biela v roce 1846, Shoemaker–Levy 9 v roce 1992 a 73P/Schwassmann–Wachmann během let 1995 do 2006. Řecký historik Eforos zapsal poznámku o pozorovaném rozdělení komety již v zimě 372–373 před n. l. Příčina rozdělení komet je předpokládaná z důvodu vysoké teploty a účinkům tlaku plynů z nitra komety, nebo také dopadu a srážky. Komety 42P/Neujmin a 53P/Van Biesbroeck vykazují znaky, toho že se jedná o pouhé části původních větších komet. Výpočetní začlenění modelu poukázala, že obě komety se přiblížily k planetě Jupiter v lednu 1850 a před touto událostí byly jejich oběžné dráhy téměř identické.
Albedo
Kometární jádra ve sluneční soustavě mohou být velmi temné objekty. Vesmírná sonda Giotto poukázala na to, že jádro Halleyovy komety odráží kolem 4 % dopadajícího světla. Sonda Deep Space 1 odhalila u komety Borrelly jen 2,5–3 % odrazivost dopadajícího světla. Přitom k srovnání čerstvá vrstva asfaltu odráží až 7 % dopadajícího světla. Temnou vrstvu na povrchu pravděpodobně tvoří komplexní organické sloučeniny. Vlivem zahřátí se odstraní prchavé látky a zanechávají za sebou těžké a řetězové organické sloučeniny, které bývají velmi temné jako dehet, nebo ropa. Samotný temný odstín kometárního jádra má napomáhat absorpci tepla nutného k postupnému vypařování.
Objevy
První mise blízkého setkání s kometou byla provedena sondou Giotto. Jednalo se o první snímání komety z tak velké blízkosti téměř až 596 km. Byly to první důkazy o přítomnosti vycházejících výtrysků plynu a povrchu o velmi nízké odrazivosti, ale také přítomnosti organických sloučenin. Během přeletu sondy v blízkosti komety byla Giotto až dvanáct tisíckrát zasažena, včetně zásahu úlomku o 1 g, který způsobil dočasnou ztrátu komunikace se střediskem Darmstadt. U Halleyovy komety bylo vypočítáno vypouštění materiálu až o 3 tunách za sekundu, ze sedmi výtrysků. Způsobující kmitání po relativně dlouhou dobu. Dalším cílem po Halleyově kometě bylo jádro komety Grigg–Skjellerup, ke které se Giotto přiblížila na vzdálenost 100–200 km. Výsledné poznatky z mise Rosetta a přistávacího modulu Philae přinesly nový vhled do podstaty komet a měřící spektrograf ALICE detekoval přítomnost elektronů (kolem 1 km nad povrchem kometárního jádra) v těsné blízkosti komety.
Odkazy
Reference
V tomto článku byl použit překlad textu z článku Comet nucleus na anglické Wikipedii.
Externí odkazy
- Obrázky, zvuky či videa k tématu kometární jádro na Wikimedia Commons
Média použitá na této stránce
This infrared image from NASA's Spitzer Space Telescope shows the Helix Nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye.
The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter.
Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.
In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died.
The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded.
So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found.
This image is made up of data from Spitzer's infrared array camera and multiband imaging photometer. Blue shows infrared light of 3.6 to 4.5 microns; green shows infrared light of 5.8 to 8 microns; and red shows infrared light of 24 microns.This image shows the nuclei of comets Tempel 1 and Hartley 2, as imaged by NASA's Deep Impact spacecraft, which continued as an extended mission known as EPOXI.
Tempel 1 is five times larger than Hartley 2. Visible jets are easily seen in images of Hartley 2, but required extensive processing to be seen in images of Tempel 1.
Tempel 1 is 7.6 kilometers (4.7 miles) in the longest dimension. Hartley 2 is 2.2 km (1.4 miles) long.
The Tempel 1 image was built up from more than 25 images captured by the impactor targeting sensor on July 4, 2005. The Hartley 2 image was obtained by the Medium- Resolution Imager on Nov. 4, 2010.This image shows comet Tempel 1 approximately 5 minutes before Deep Impact's probe smashed into its surface. It was taken by the probe's impactor targeting sensor. The Sun is to the right of the image and reveals terrain varying in brightness by a factor of two. Shadows and bright areas indicate surface topography. Smooth regions with no features (lower left and upper right) are probably younger than rougher areas with circular features, which are probably impact craters. The probe crashed between the two dark-rimmed craters near the center and bottom of the comet.
The nucleus is estimated to be about 5 kilometers (3.1 miles) across and 7 (4.3 miles) kilometers tall.Hubble Space Telescope Advanced Camera for Surveys image of Comet 73P/Schwassmann-Wachmann 3 fragment B on 2006 April 18, 19 and 20.