Lahar

Lahar, vyvolaný intenzivním deštěm, čtyři měsíce po erupci filipínského Pinatuba

Lahar (název původem z indonéštiny), někdy i sopečný bahnotok, je doprovodný jev při některých sopečných erupcích. Jedná se o velmi rychle tekoucí směs sopečného popela, úlomků ztuhlé lávy a velkého množství vody.[1][2]

Popis

Příčiny

Zaledněný vrchol Mount Rainier
Kráterové jezero Ruapehu

Pro spuštění laharů existuje několik možností:[1]

  • roztátí ledovce nebo sněhové pokrývky – průchodem pyroklastického proudu nebo přívalu,[3]
  • vylití kráterového jezera – explozivní erupcí nebo kolapsem nestabilní přírodní hráze,
  • silné srážky – deště či záplavové vody snadno erodují nezpevněný sopečný materiál. Takové lahary bývají sice malé, zato velmi hojné v období dešťů,
  • kolaps sopečného tělesa – zhroucení svahů sopky může s přítomností dostatečného objemu vody zkapalnět.

Vznik

Lahar vzniká, když se masa vody smíchá s vulkanickým materiálem či sedimenty, a to jak během erupční aktivity, tak prostřednictvím jiných procesů mimo ni. V závislosti na způsobu jejich vzniku mohou mít teplotu od 0 °C do 100 °C (tzv. studené a horké lahary). Podle tvaru a sklonu dráhy se jejich rychlost pohybuje mezi 36 km/h a 200 km/h. Jsou schopné urazit vzdálenost více než 100 km. Navzdory své vysoké hustotě (množství pevných složek zpravidla přesahuje množství vody) se chovají spíše jako kapaliny. Během svého postupu mohou postupně nabývat na objemu tím, jak erodují koryto a strhávají vše, co jim stojí v cestě. Proudy bahna unáší také větší předměty (balvany, kmeny stromů, trosky budov a mostů), což je činí značně destruktivními. Předpokladem pro zformování laharu je dostatečný zdroj vody, hojné množství nezpevněného sopečného materiálu, strmé svahy a spouštěcí mechanismus. Rozdělují se na:[1]

  • primární (vznikají během erupční aktivity)
  • sekundární (post-eruptivní)

Riziko

Podle studie z roku 2013, zjišťující počet obětí a příčinu jejich smrti, měla vulkanická činnost mezi roky 16002010 na svědomí zhruba 274 501 obětí. Lahary si vyžádaly 44 252 životů (17 %), což je řadí ke třetímu nejnebezpečnějšímu sopečnému jevu (po pyroklastických proudech a vulkanogenních tsunami).[4]

Zatímco bezprostřední okolí sopek, které je nejvíce ohroženo erupcemi, obvykle zůstává bez trvalého osídlení, vzdálenější okolí je často kvůli úrodné půdě obydleno hustěji. Osídlení se velmi často nejvíce koncentrují kolem říčních toků. Bahnotoky tak pro ně představují velkou hrozbu, neboť se špatně předvídají, nemusejí se pro daný tok očekávat a mohou se objevit zcela náhle v podobě povodňové vlny.[1]

Katastrofy zapříčiněné lahary

Bahnotokem zaplavené město Armero v listopadu 1985

Nejtragičtější pohromou, způsobenou laharem, bylo zničení kolumbijského města Armera 13. listopadu 1985. Při erupci vulkánu Nevado del Ruiz došlo k interakci pyroklastických proudů s vrcholovým ledovcem. Roztavily 10 % jeho objemu a do říčních údolí se vyvalilo 100 milionů kubíků vody. Bahnotoky v nočních hodinách následně zasáhly 48 km vzdálené město Armero s 29 tisíci obyvateli, kde zabily více než 20 tisíc obyvatel a zničily 5 tisíc budov. Oběťmi z okolních měst se celkový počet navýšil na 23 tisíc mrtvých. V Indonésii je sopka Kelut notoricky známa svými lahary, jejichž původcem je kráterové jezero. Od roku 1848 u ní proběhlo 10 erupcí a 7 z nich spustilo bahnotok. V roce 1919 se uvolnilo 70 mil. m³. Záplava postihla 130 km² a vyžádala si 5 tisíc mrtvých. Když hurikán Mitch roku 1998 udeřil na Střední Ameriku, nastal silnými srážkami (1 300 mm) sesuv na svazích sopky Casita, který se jejich působením proměnil v lahar. Zničil dvě města a zahubil 2 tisíce osob. Silné deště, roky po katastrofické erupci Pinatuba, rovněž stály za opakovaným vznikem bahnotoků. Během 6 let došlo jejich působením k remobilizaci 2,5 km³ pyroklastických depozitů. Vodní toky, silně zanesené sopečnými sedimenty, zaplavily 400 km² a 50 tisíc obyvatel se muselo vysídlit. 24. prosince 1953 došlo k nejhorší železniční nehodě v historii Nového Zélandu, zvané katastrofa u Tangiwai. Lahar, původem z kráterového jezera na vrcholu vulkánu Ruapehu, silně poškodil železniční most přes řeku Whangaehu u Tangiwai. Krátce nato po mostě projížděl noční vlak Wellington-Auckland a zřítil se do proudu bahna. O život přišlo 151 lidí, některé z obětí se nikdy nepodařilo nalézt.[1][5]

Budoucí hrozby

Hazardová mapa Mount Rainier. V šedém okruhu hrozí nebezpečí pyroklastických proudů, sopečných pum a spadu tefry. Červené, oranžové a žluté zóny označují řeky, kudy se proženou lahary.[6]

Mezi budoucí potenciální hrozby patří Mount Rainier, ležící ve státě Washington v USA. Roztátí 26 ledovců na vrcholu o celkovém objemu 4,2 miliard m³ by v případě silné erupce vyvolalo masivní lahary. Mnoho zdejších obcí a měst bylo vystavěno na usazených sedimentech laharů z dřívějších erupcí. Podle USGS zde žije až 150 tisíc obyvatel. Pokud by se okolními řekami prohnal živel se stejnou intenzitou jako před 5 tisíci lety, zničil by podle geologa Geoffa Claytona města jako: Enumclaw, Orting, Kent, Auburn, Puyallup, Sumner a Renton. Dostal by se též do ústí řeky Duwamish, kde by zničil část centra města Seattle a způsobil by tsunami na Pugetově zálivu a Washingtonově jezeře. Dopady potenciálního sopečného výbuchu mírně snižují varovné sirény a vyznačené evakuační cesty v okrese Pierce. Více zalidněný okres King by byl rovněž ohrožen, ale zatím nemá žádný výstražný systém. Od roku 2001 totiž přestalo financování federální vlády na ochranu před tímto živlem. Některá města a obce v ohrožených oblastech, jako je například Orting se obávají, aby nedošlo k podobné katastrofě jako pod kolumbijskou sopkou Nevado del Ruiz roku 1985.[1]

Riziková je i sopka Ruapehu na Novém Zélandu. Kráter je totiž vyplněn jezerem, jehož odtok je pramenem Whangaehu. Řeka je kvůli tomu často sužována lahary, přičemž se na ní objevily v rocích 1862, 1895 a 1975. V letech 1945 a 1996 došlo k sopečným erupcím, jejichž vyvrhovaný materiál zablokoval odtok. Zformované přírodní hráze se po čase zhroutily a Whangaehu se opět prohnaly mohutné lahary. První událost se odehrála v roce 1953 a vedla k nejhoršímu železničnímu neštěstí Nového Zélandu, kdy bahnotok před projíždějícím rychlíkem strhnul most a na místě tak zemřelo 151 z 285 cestujících. Později byl na sopce iniciativou ministerstva pro ochranu přírody zřízený varovný systém, jenž 18. března 2007 poprvé a úspěšně detekoval vytvoření dalšího laharu. Ruapehu je nepřetržitě monitorovaná pomocí sítě seismografů, stanic GPS, mikrofonů, webových kamer, včetně měření koncentrací sopečných plynů v ovzduší. Monitoruje se i teplota vody v kráterovém jezeru a rovněž se provádí její chemická analýza.[7][8]

Mezi další zvláště nebezpečné sopky patří také Merapi a Galunggung, obě ležící na ostrově Jáva v Indonésii.[9]

Galerie

Odkazy

Reference

  1. a b c d e f Haraldur Sigurðsson. The Encyclopedia of Volcanoes. [s.l.]: Academic Press, 2015. 1456 s. ISBN 978-0-12-385938-9. (angličtina) 
  2. Volcano Hazards. Lahars move rapidly down valleys like rivers of concrete. https://www.usgs.gov/ [online]. Dostupné online. 
  3. USGS. Pyroclastic flows move fast and destroy everything in their path. https://www.usgs.gov [online]. Dostupné online. 
  4. Melanie Rose Auker; Robert Stephen; John Sparks; Lee Siebert; Helen Sian Crosweller; John Ewert. A statistical analysis of the global historical volcanic fatalities record [online]. Journal of Applied Volcanology, 2013-02-14. Dostupné online. (angličtina) 
  5. https://nzhistory.govt.nz/culture/the-tangiwai-railway-disaster
  6. https://www.usgs.gov/volcanoes/mount-rainier/volcanic-hazards-mount-rainier
  7. https://www.cambridge.org/core/journals/annals-of-glaciology/article/lahars-of-ruapehu-volcano-new-zealand-risk-mitigation/AD4A60DFAAA2B410FECE00DEC4DD1117
  8. https://www.gns.cri.nz/our-science/natural-hazards-and-risks/volcanoes/
  9. https://www.lyellcollection.org/doi/10.1144/gsl.qjeg.1985.018.01.09

Literatura

  • SIGURDSSON, Haraldur; VALLANCE, James W. Encyclopedia of Volcanoes. [s.l.]: Academic Press, 1999. Dostupné online. ISBN 978-0-12-643140-7. Kapitola Lahars, s. 601-616. (anglicky) 

Externí odkazy

Média použitá na této stránce

A lahar on the east side of Pinatubo volcano.jpg
A lahar, or volcanic mudflow, fills the banks of the Pasig-Potrero River on the east side of Pinatubo volcano in the Philippines on October 13, 1991. The lahar moved at a velocity of 3-5 m/sec, and carried a few meter-sized boulders. This lahar was not directly produced by an eruption, but was triggered by minor rainfall, which remobilized thick deposits of ash and pumice that blanketed the landscape. Devastating mudflows occurred at Pinatubo for years after the catastrophic 1991 eruption.
Mount Rainier Hazard Map-en.svg

Hazard map around the Mount Rainier, state of Washington, United States.
 
Lava flow and pyroclastic flows
 
Electron Mudflow-sized event (generally large in size)
 
National Lahar-sized event (generally moderate in size)
 
Lahars not necessarily associated to volcanism (generally small)
 
Flooding after lahar event
 
Potential area of inundation from failure of Alder Dam
 
County boundary
 
Mount Rainier National Park boundary
 
City
MSH82 lahar from march 82 eruption 03-21-82.jpg
Mount St. Helens erupted often between 1980 and 1986. An explosive eruption on March 19, 1982, sent pumice and ash 9 miles (14 km) into the air, and resulted in a lahar (the dark deposit on the snow) flowing from the crater into the North Fork Toutle River valley. Part of the lahar entered Spirit Lake (lower left corner) but most of the flow went west down the Toutle River, eventually reaching the Cowlitz River, 50 miles (80 km) downstream.
Hot lahar at Santiaguito.jpg
Hot lahar in the Nima II river, near El Palmar, Guatemala, 1989.
Mudflow covering SR 504 near Coal Bank bridge, July 1980.jpg
Sedimentary deposits from the lahar of Mount St. Helens's May 1980 eruption, seen covering State Route 504 a few months later. USGS employee Gordon Coyier is seen posing next to a buried highway sign.
Rainier View from Burroughs 2 (1).jpg
Autor: brewbooks from near Seattle, USA, Licence: CC BY-SA 2.0
Mount Rainier from Burroughs Mountain 2, with Steamboat Prow center. Winthrop Glacier to the right.
Armero aftermath Marso.jpg
Río Lagunillas, former location of Armero.

An explosive eruption from Ruiz's summit crater on November 13, 1985, at 9:08 p.m. generated an eruption column and sent a series of pyroclastic flows and surges across the volcano's broad ice-covered summit. Pumice and meltwater produced by the hot pyroclastic flows and surges swept into gullies and channels on the slopes of Ruiz as a series of small lahars. Flowing downstream from Ruiz at an average speed of 60 km per hour, lahars eroded soil, loose rock debris and stripped vegetation from river channels. By incorporating water and debris from along river channels, the lahars grew in size as they moved away from the volcano--some lahars increased up to 4 times their initial volumes.

Within four hours of the beginning of the eruption, lahars had traveled 100 km and left behind a wake of destruction: more than 23,000 people killed, about 5,000 injured, and more than 5,000 homes destroyed along the Chinchiná, Gualí, and Lagunillas rivers. Hardest hit was the town of Armero at the mouth of the Río Lagunillas canyon, which was located in the center of this photograph. Three quarters of its 28,700 inhabitants perished.

(Amalgamation of sentences taken verbatim from source.)
Hot lahar at Santiaguito 02.jpg
Hot lahar in the Nima II river, near El Palmar, Guatemala, 1989. From [1]
Crater Lake, Ruapehu, New Zealand 13.JPG
Autor: Michal Klajban, Licence: CC BY-SA 4.0
Crater Lake. Ruapehu, New Zealand
MSH80 mudline muddy river with USGS scientist 10-23-80.jpg
(copied description from USGS site): Nearly 135 miles (220 kilometers) of river channels surrounding the volcano [Mt. St. Helens] were affected by the lahars of May 18, 1980. A mudline left behind on trees shows depths reached by the mud. A scientist (middle right) gives scale. This view is along the Muddy River, southeast of Mount St. Helens.