Mineralokortikoidy
Mineralokortikoidy jsou hormony, které ovlivňují metabolismus minerálů v těle. Řídí především udržování normální hladiny sodíku a draslíku v krevní plazmě a objemu extracelulární tekutiny.[1]
Jsou to steroidní hormony produkované v kůře nadledvin. Všechny kortikosteroidy mají jak mineralokortikoidní, tak glukokortikoidní aktivitu, mezi mineralokortikoidy se proto řadí ty z nich, u kterých mineralokortikoidní aktivita převažuje. Nejdůležitějším je aldosteron.[2]
Chemická struktura a biosyntéza
Mineralokortikoidy patří mezi steroidy, jejich chemickým základem je steranové jádro, cyklopentanoperhydrofenantren složený ze 17 uhlíků, s bočními řetězci, které zvyšují počet uhlíků v molekule mineralokortikoidů na 21.[2] V organismu jsou syntetizovány z cholesterolu odštěpením jeho postranního řetězce a vytvoření oxoskupiny na dvacátém uhlíku. Vzniklá molekula pregnenolonu je konvertována na progesteron dehydrogenací na třetím uhlíku a účinkem izomerázy.
Vzniklá molekula progesteronu je substrátem pro sérii hydroxylací, při kterých je na přesně dané uhlíky přidávána hydroxylová skupina OH. Hydroxylací na pozici C21 je potřebná pro mineralokortikoidní i glukokortikoidní účinek. Vzniká 11-deoxykortikosteron, který je aktivním mineralokortikoidem, schopným indukovat zadržování sodíku.[3] Hydroxylací 11-deoxykortikosteronu na pozici C11 vzniká kortikosteron, který má především glukokortikoidní aktivitu a je jen slabým mineralokortikoidem, s 5 % účinnosti aldosteronu.[3]
Výše popsané procesy mohou probíhat v celé kůře nadledvin. Pouze buňky zona glomerulosa ovšem vytváří enzym, který dovoluje další hydroxylaci na pozici C18 za vzniku 18-hydroxykortikosteronu.[3] Hydroxylová skupina na osmnáctém uhlíku je následně dehydratována na aldehyd a vzniká aldosteron.
Na druhou stranu, buňkám zona glomerulosa chybí enzym, který umožňuje hydroxylaci na pozici C17, což dává vzniklým steroidům vyšší glukokortikoidní aktivitu a vede k syntéze kortizolu, nejsilnějšího lidského glukokortikoidu.[4]
Vylučování mineralokortikoidů
Buňky zona fasciculata a zona retikularis podléhají řízení z hypofýzy prostřednictvím ACTH. Jeho přítomnost spustí uvolnění cholesterolu z tukových kapének uvnitř cytoplasmy buněk kůry nadledvin a jeho konverzi na pregnenolon. Tyto buňky dále syntetizují hormony s mineralokortikoidní aktivitou jen, když nejprve dojde k hydroxalaci na pozici C21, protože to brzdí hydroxylaci na C17.[4] Vzniká tak 11-deoxykortikosteron a kortikosteron.
Buňky zona glomerulosa jsou regulovány především přes systém renin-angiotenzin-aldosteron, vazbou angiotenzinu II na receptory buněk této zóny kůry. To jednak spustí uvolnění cholesterolu a jeho konverzi na pregnenolon, jednak podporuje hydroxylaci kortikosteronu a vznik aldosteronu. Syntézu aldosteronu podobným způsobem spouští také zvýšení koncentrace draslíku v krevní plasmě.[5]Jen omezeně má na činnost buněk zona glomerulosa vliv také sodík a ACTH.[5]
Buňky v sobě vytvořené hormony nijak neskladují a uvolňují je do krve okamžitě po jejich vzniku. Aldosteron nemá žádný specifický vazebný protein, pouze se slabě váže na albumin.[6] Kvůli tomu je jeho setrvávání v plasmě velmi krátké, je rychle vychytáván játry, kde je přeměněn na tetrahydroaldosteron-3-glukosiduronát, který je vylučován močí.[7] Aldosteron nikdy nedosahuje takové koncentrace v krevní plasmě, aby mohl mít i glukokortikoidní účinky.[8] 11-deoxykortikosteron a kortikosteron se v krevní plasmě vážou na transkortin, přičemž plasmatický poločas kortikosteronu je méně než 1 hodina.[6]
Biologické účinky
Glukokortikoidy jsou steroidní hormony: prostupují buněčnou membránou buněk a vážou se přímo v cytoplasmě na specifické receptory. Kortikosteron i aldosteron se s vysokou afinitou vážou i na glukokortikoidový receptor, tzv. receptor II. typu ale jejich koncentrace v krevní plasmě je udržována příliš nízko, než aby se jejich glukokortikoidní aktivita mohla nějak projevit.[8] Receptory pro mineralokortikoidy, tzv. I. typu, jsou rovněž obsazovány i kortizolem a kortikosteronem. Aldosteron však v zde získává výhodu tím, že nemá žádný vazebný protein v plasmě, takže veškerý aldosteron je aldosteron volný, který může rychle vstupovat do buněk a vázat se na receptory, druhou pojistkou jeho účinku i v konkurenci ostatních hormonů je pak fakt, že v cílových tkáních jsou receptory I. typu vybavené enzymem, který rozkládá kortizol a kortikosteron, ne však aldosteron, což vytváří jejich absolutní selektivitu.[9] Cílové buňky s receptorem I. typu jsou především v ledvinách, tračníku a příušní slinné žláze, dále v hipokampu a v srdci.[9]
Navázání mineralokortikoidu na receptor v cytoplasmě vytváří komplex hormon-receptor, který má schopnost navázat se na chromatin na specifickou oblast DNA a aktivovat expresi určitých genů. V buňkách ledvin je důsledkem zvýšení počtu sodných kanálů v buněčné membráně přivrácené do ledvinových kanálků, zvyšuje se také aktivita mitochondriálních enzymů včetně citrátsyntázy, čímž se zvýší produkce ATP a zvyšuje se poměr NADH/NAD. To pravděpodobně jednak zvyšuje průnik sodíku z ledvinových kanálků do buněk, jednak zvyšuje schopnost buňky odčerpávat sodné ionty Na+/K+ pumpou na straně odvrácené.[10]
Další proteiny vzniklé pod vlivem mineralokortikoidů se podílejí na zvýšené sekreci draslíkových, vodíkových a amonných iontů. Aldosteron vykazuje nejsilnější účinek ze všech kortikosteroidů, je 30-50x účinnější než 11-deoxykortikosteron a 1000x účinnější než kortikosteron a kortizol.[10] Protože je však kortizol přítomen v těle v mnohem větších koncentracích než aldosteron, i on se svou mineralokortikoidní, i když slabou, aktivitou podílí na regulaci zadržování sodíku a vylučování draslíku ledvinami.[10]
Absolutním důsledkem působení mineralokortikoidů je zvýšení zpětné resorbce sodíku z primární moči do extracelulární tekutiny, což s sebou osmoticky strhává i vodu, která je tak společně se sodnými ionty zadržována v organismu.
Význam
Aldosteron je součástí systému renin-angiotenzin-aldosteron, který řídí výšku krevního tlaku a objem krve. Nadměrné i nedostatečné vylučování hormonů s mineralokortikoidním účinkem vyvolává závažná onemocnění.
Při ztrátě funkce kůry nadledvin vzniká Addisonova nemoc: její projevy jsou dány kombinací nedostatku glukokortikoidů a mineralokortikoidů. Nemocný má kromě jiných příznaků nízký krevní tlak, sníženou glomerulární filtraci, nízkou hladinu sodíku a vysokou hladinu draslíku v krevní plasmě a to je důsledek právě nedostatku mineralokortikoidů.
Stav nadbytku mineralokortikoidů se nazývá aldosterismus. Projevuje se hypertenzí a alkalózou organismu s vysokou hladinou sodíku a nízkou hladinou draslíku v krevní plasmě.[10]
Odkazy
Reference
- ↑ TROJAN, Stanislav, a kol. Lékařská fyziologie. 4. vyd. Praha: Grada, 2003. 771 s. ISBN 80-247-0512-5. Kapitola Žlázy regulované tropiny adenohypofýzy, s. 497.
- ↑ a b MURRAY, K. Harperova biochemie. Praha: H & H, 2002. 872 s. ISBN 80-7319-013-3. Kapitola Hormony kůry nadledvin, s. 540.
- ↑ a b c MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 551
- ↑ a b MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 552
- ↑ a b MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 555
- ↑ a b MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 553
- ↑ MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 554
- ↑ a b MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 556
- ↑ a b MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 559
- ↑ a b c d MURRAY, K. Harperova biochemie. Kapitola Hormony kůry nadledvin, s. 560
Literatura
- MURRAY, K. Harperova biochemie. Praha: H & H, 2002. 872 s. ISBN 80-7319-013-3.
- TROJAN, Stanislav, a kol. Lékařská fyziologie. 4. vyd. Praha: Grada, 2003. 771 s. ISBN 80-247-0512-5.
Související články
Externí odkazy
- Obrázky, zvuky či videa k tématu mineralokortikoidy na Wikimedia Commons
Média použitá na této stránce
Structure of aldosterone
Structure of corticosteroid-binding globulin in complex with cortisol.
Autor: Soupvector, Licence: CC BY-SA 4.0
The renin–angiotensin system (RAS) or the renin–angiotensin–aldosterone system (RAAS). Start reading this schematic from the left, where it says "Decrease in renal perfusion (juxtaglomerular apparatus)". Alternatively, the RAAS can also be activated by a low NaCl concentration in the macula densa or by sympathetic activation.
- Legend info: Blue and red dashed arrows indicate stimulatory or inhibitory signals, which is also indicated by the +/-. In the tubule and collecting duct graphics, the grey dashed arrows indicate passive transport processes, contrary to the active transport processes which are indicated by the solid grey arrows. The other solid arrows either indicate a secretion from an organ (blue, with a starting spot) or a reaction (black). These 2 processes can be stimulated or inhibited by other factors.
Autor: Gjpallen46, Licence: CC BY-SA 3.0
Progressive metabolic pathway describing biosynthesis of aldosterone starting with progesterone biosynthesis