Molybden

Molybden
 [Kr] 4d5 5s1
98Mo
42
 
        
        
                  
                  
                                
                                
↓ Periodická tabulka ↓
Obecné
Název, značka, čísloMolybden, Mo, 42
Cizojazyčné názvylat. Molybdenum
Skupina, perioda, blok6. skupina, 5. perioda, blok d
Chemická skupinaPřechodné kovy
Koncentrace v zemské kůře1,5 až 8 ppm
Koncentrace v mořské vodě0,01 mg/l
VzhledŠedobílý, tvrdý a křehký kov
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost95,96
Atomový poloměr139 pm
Kovalentní poloměr154 pm
Iontový poloměr62 pm
Elektronová konfigurace[Kr] 4d5 5s1
Oxidační čísla−II, -I, I, II, III, IV, V, VI
Elektronegativita (Paulingova stupnice)2,16
Ionizační energie
První684,3 KJ/mol
Druhá1560 KJ/mol
Třetí1618 KJ/mol
Látkové vlastnosti
Krystalografická soustavaKrychlová, prostorově centrovaná
Molární objem9,38×10−6 m3/mol
Mechanické vlastnosti
Hustota10,28 g/cm3
SkupenstvíPevné
Tvrdost5,5
Tlak syté páry100 Pa při 3312K
Rychlost zvuku6190 m/s
Termické vlastnosti
Tepelná vodivost138 W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání2622,85 °C (2 896 K)
Teplota varu4638,85 °C (4 912 K)
Skupenské teplo tání37,48 KJ/mol
Skupenské teplo varu598 KJ/mol
Měrná tepelná kapacita24,06 Jmol−1K−1
Elektromagnetické vlastnosti
Elektrická vodivost18,7×106 S/m
Měrný elektrický odpor53,4 nΩ·m
Standardní elektrodový potenciál−0,2 V
Magnetické chováníParamagnetický
Bezpečnost
GHS02 – hořlavé látky
GHS02
GHS08 – látky nebezpečné pro zdraví
GHS08
[1]
Nebezpečí[1]
Izotopy
IV (%)ST1/2ZE (MeV)P
92Mo11,84%je stabilní s 50 neutrony
93Moumělý4×103 letε-93Nb
94Mo9,25%je stabilní s 52 neutrony
95Mo15,92%je stabilní s 53 neutrony
96Mo16,68%je stabilní s 54 neutrony
97Mo9,55%je stabilní s 55 neutrony
98Mo24,13%je stabilní s 56 neutrony
99Moumělý65,24 hodinyβ0,43699Tc

γ0,7499Tc
100Mo9,637,8×1018 let2 × β3,04100Ru
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Cr
NiobMoTechnecium

W

Molybden (chemická značka Mo, latinsky Molybdaenum) je kovový prvek 6. skupiny periodické soustavy prvků. Praktické využití nalézá hlavně jako složka vysoce legovaných ocelí a při výrobě průmyslových katalyzátorů.

Základní fyzikálně-chemické vlastnosti

Minerál molybdenit

Elementární molybden je stříbřitý až šedobílý tvrdý a křehký kov se značně vysokým bodem tání. Za teplot pod 0,915 K je supravodičem I. typu. Krystaluje v těsně centrované kubické mřížce.

Na vzduchu je za normální teploty stálý, stejně tak je odolný i vůči působení vody. S vodíkem nereaguje a nevytváří žádné hydridy.

Vůči působení minerálních kyselin je poměrně stálý, především oxidačně působící kyseliny pasivují jeho povrch a chrání jej tak před dalším napadením. Stejně tak je odolný vůči roztokům alkalických hydroxidů.

Poměrně snadno se rozpouští v kyselině chlorovodíkové i lučavce královské. Nejsnáze se kovový molybden rozpouští alkalickým tavením, například se směsí dusičnanu draselného a hydroxidu sodného (KNO3 + NaOH). Po zahřátí reaguje s mnoha nekovy za vzniku převážně intersticiálních sloučenin.

Ve sloučeninách se molybden vyskytuje v řadě různých mocenství od Mo+2 a po Mo+6 a v rozsáhlé škále různých barev.

Historie

Roku 1778 švédský chemik Carl Wilhelm Scheele vyizoloval z minerálu molybdenitu oxid dosud neznámého prvku. P. J. Hjelm připravil z tohoto oxidu kovový molybden redukcí dřevěným uhlím. Název molybden pochází z řeckého pojmenování olova molybdos, které označovalo jakýkoliv měkký černý materiál vhodný ke psaní.

Výskyt a výroba

Těžba v roce 2005

Molybden je na Zemi poměrně vzácný, jeho obsah se odhaduje na 1,5–8 mg/kg v zemské kůře. V mořské vodě se však molybden nachází v koncentraci až 0,01 mg/l. Ve vesmíru připadá jeden atom molybdenu na 10 miliard atomů vodíku.

V rudách se vyskytuje jen v nízkých koncentracích. Nejvýznamnější rudou je molybdenit (sulfid molybdeničitý, MoS2), jehož ložiska se nacházejí především v Coloradu v USA[zdroj?!]. Dalšími rudami jsou wulfenit, molybdenan olovnatý, (PbMoO4) a powellit (Ca(Mo,W)O4).

Molybdenit jako MoS2 se těží buď samostatný nebo se získává při výrobě mědi. Po přečištění flotací se pražením převede na oxid molybdenový podle rovnice:

2 MoS2 + 7 O2 → 2 MoO3 + 4 SO2

Ten se buď využívá přímo, nebo se aluminotermicky převede na ferromolybden, který nachází použití při výrobě korozivzdorných ocelí.

Čistý molybden se vyrábí redukcí oxidu molybdenu vodíkem.

MoO3 + 3 H2 → Mo + 3 H2O

Ionty molybdenu jsou také obsaženy v proteinovém komplexu nitrogenáza, který je využíván mutualistickými fixátory (zpravidla gramnegativní bakterie, mikrosymbionti – zejména Rhizobium) atmosférického molekulárního dusíku, přičemž dochází k obohacování půdy.

Využití

Základní praktické využití nalézá molybden v metalurgii při výrobě speciálních ocelí. Již poměrně malé množství molybdenu ve slitině výrazně zvyšuje její tvrdost, mechanickou a korozní odolnost. Proto se z molybdenových ocelí vyrábějí silně mechanicky namáhané součásti strojů jako například hlavně děl, geologické vrtné hlavice a nástroje pro obrábění kovů[zdroj?!]. Z molybdenu se také vyrábí povrchová vrstva pístních kroužků. V chemickém průmyslu je materiálem pro reaktory pracující v silně korozivním prostředí za vysokých tlaků a teplot.[zdroj?!]

Používá se pro výrobu petrochemických katalyzátorů sloužících k odstranění sirných sloučenin z ropy a ropných produktů.[zdroj?!]

V zemědělství se jeho sloučeniny využívají jako pro některá umělá hnojiva, například pro pěstování brokolice nebo květáku. Potravinářský průmysl ho používá pro výrobu některých potravinových doplňků.[2]

Sloučeniny

Chemie sloučenin molybdenu je značně pestrá a komplikovaná. Již pouhý fakt, že se molybden vyskytuje v pěti různých valenčních stavech od Mo+2 až po Mo+6, které mohou poměrně snadno přecházet mezi sebou je důvodem, že chemie molybdenu je spíše předmětem diplomových prací než praktického uplatnění v běžném životě. Mnoho chemiků se již setkalo s faktem, že mnohé z bohatého spektra jeho sloučenin vykazují nízkou rozpustnost, což v praxi znamená, že je poměrně velmi obtížné udržet rozpuštěný molybden kompletně v roztoku po delší dobu. Analýza obsahu molybdenu v roztoku se pak někdy stává soutěží s časem, kdy je nutno provést příslušnou operaci dříve, než z roztoku vypadne nějaká pestře zbarvená nerozpustná sloučenina molybdenu.

Pro molybden je navíc typická tvorba heteropolykyselin, polymerních sloučenin molybdenu, kyslíku a vodíku bez přesného stechiometrického vzorce.

V praxi má technologický význam například sulfid molybdeničitý, MoS2 – černá práškovitá sloučenina, která se používá jako lubrikant (mazadlo) v prostředích s vysokou teplotou nebo s extrémním tlakovým namáháním.[zdroj?!]

Dále se můžeme prakticky setkat se solemi kyseliny molybdenové H2MoO4 – molybdenany, které jsou složkou některých barevných pigmentů a nalézají uplatnění v analytické chemii.[zdroj?!]

Biologický význam

Přestože je molybden přítomen v živých tkáních živočichů a rostlin pouze ve stopovém množství, je nezbytný pro správné fungování běžných životních funkcí. Bylo prokázáno, že se aktivně účastní v řadě enzymatických systémů, které jsou zodpovědné za metabolismus železa a detoxikaci sulfidů.[3] Významnou roli hraje molybden i prevenci zubního kazu a jeho přítomnost zvyšuje tvrdost zubní skloviny.[3]

Nedostatek molybdenu může vést k anémii, přispívá ke zvýšenému výskytu záchvatů astmatu, zvýšené kazivosti zubů a zhoršení ochrany proti infekci močového měchýře.[zdroj?!] Podle některých zdrojů je nedostatek molybdenu ve stravě příčinou depresivních stavů a může vést k impotenci.[zdroj?!]

Nedostatek molybdenu u rostlin způsobuje např. vyslepnutí květáku nebo růstové poruchy dalších košťálových zelenin.

Hlavním přirozeným zdrojem molybdenu v potravě jsou luštěniny, celozrnné pečivo a listová zelenina.

Odkazy

Reference

  1. a b Molybdenum. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-24]. Dostupné online. (anglicky) 
  2. Molybden z potravin tělu stačí. Nejsme v Íránu
  3. a b molybden. Arnika [online]. [cit. 2020-02-22]. Dostupné online. 

Literatura

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy

Média použitá na této stránce

2005molybdenum (mined).PNG
This bubble map shows the global distribution of molybdenum output in 2005 as a percentage of the top producer (USA - 56,900 tonnes).

This map is consistent with incomplete set of data too as long as the top producer is known. It resolves the accessibility issues faced by colour-coded maps that may not be properly rendered in old computer screens.

Data was extracted on 31st May 2007. Source - http://www.bgs.ac.uk/mineralsuk/commodity/world/home.html

Based on :Image:BlankMap-World.png
Molybdenum crystaline fragment and 1cm3 cube.jpg
Autor: Alchemist-hp (talk) (www.pse-mendelejew.de), Licence: FAL
Molybdenum, ebeam remelted macro crystalline fragment. Purity 99.99 % (= "4N"), as well as a high purity single crystalline (99.999 % = 5N) 1 cm3 molybdenum cube for comparison.
Molybdenum spectrum visible.png
Autor: McZusatz (talk), Licence: CC0
Molybdenum spectrum; 400 nm - 700 nm