Násobení matic
Součin matic[1][2] hovorově též maticové násobení (neplést se skalárním násobkem matice) je v matematice zobecnění součinu čísel na matice. Formálně se dá definovat jako binární operace na maticích odpovídajících typů. Využívá se v matematice, fyzice a jejich aplikacích, obvykle pro popis skládání lineárních zobrazení.
Speciálním případem násobení matic je součin matice typu a vektoru braného jako matice o typu (sloupcový vektor). Tento součin lze interpretovat jako aplikaci lineárního zobrazení reprezentovaného transformační maticí na vektor.
Formální definice
Pokud je matice typu a je matice typu , jejich součin je matice typu definovaná vztahem
pro všechny prvky výsledné matice indexované a .
Ve většině případů jsou prvky matice čísla, ale mohou to být jakékoli druhy matematických objektů, pro které je definováno sčítání a násobení, které jsou asociativní a takové, že sčítání je komutativní a násobení je distributivní s ohledem na sčítání, typicky prvky nějakého tělesa. Prvky mohou být dokonce samotné matice (bloková matice).
U reálných matic lze prvek v -tém řádku a -tém sloupci výsledné matice lze také chápat jako standardní skalární součin vektoru -tého řádku první matice s vektorem -tého sloupce druhé matice.
Tečka se v součinu vynechává a píše se pouze .[2]
Ukázka výpočtu
Součin matic a je
Prvky matice zůstávají v řádcích tak, jak jsou, a prvky v matici se rozmístí opět do levého a pravého sloupce.
Použití
Historicky bylo násobení matic zavedeno pro usnadnění a objasnění výpočtů v lineární algebře. Tento silný vztah mezi maticovým součinem a lineární algebrou zůstává je fundamentální v celé matematice, stejně jako ve fyzice, chemii, inženýrství a informatice.
Soustavy lineárních rovnic
Obecný tvar soustavy lineárních rovnic je
Při použití stejné notace jako výše je zápis soustavy ekvivalentní jednoduché maticové rovnici
- .
Lineární zobrazení
Pokud má vektorový prostor konečnou bázi, každý z jeho vektorů je jednoznačně reprezentován konečnou posloupností skalárů, nazývanou vektor souřadnic, tvořenou souřadnicemi vektoru vzhledem k bázi. Tyto vektory souřadnic tvoří další vektorový prostor, který je izomorfní původnímu vektorovému prostoru. Vektor souřadnic je běžně zapisován jako sloupcový vektor, což je matice pouze s jedním sloupcem. Sloupcový vektor pak představuje jak souřadnicový vektor, tak i vektor původního vektorového prostoru.
Lineární zobrazení prostoru dimenze do vektorového prostoru dimenze převádí sloupcový vektor
na sloupcový vektor
Lineární zobrazení je proto definováno maticí
a zobrazuje sloupcový vektor na maticový součin
- .
Je-li další lineární zobrazení z předchozího vektorového prostoru dimenze , do vektorového prostoru dimenze , pak jej lze reprezentovat maticí řádu . Přímý výpočet ukazuje, že matice složeného zobrazení je rovna součinu . Obecný vzorec , který definuje složené zobrazení, je jedním z specifických případů asociativity maticového součinu:
Geometrické rotace
Při použití systému kartézských souřadnic v euklidovské rovině je rotace o úhel kolem počátku (počátek odpovídá nulovému vektoru) lineární zobrazení. Přesněji, kde výchozí bod i jeho obraz jsou zapsány jako sloupcové vektory.
Složení rotací o úhel a pak o úhel odpovídá maticovému součinu ve druhé rovnosti jsou použity součtové vzorce. Výsledné složení odpovídá rotaci o úhel , jak lze očekávat.
Skalární součin, bilineární forma a seskvilineární forma
Standardní skalární součin dvou reálných sloupcových vektorů lze zapsat maticovým součinem
kde je řádkový vektor získaný pomocí transpozice . (Výsledná matice je zde ztotožněna se svým jediným prvkem.)
Obecněji lze jakoukoli bilineární formu ve vektorovém prostoru konečného rozměru vyjádřit jako maticový součin
a jakoukoliv seskvilineární formu lze vyjádřit jako
kde je hermitovsky sdružený vektor k vektoru .
Alokace zdrojů v ekonomii
Jako příklad si představme fiktivní továrnu, která používá 4 druhy surovin k výrobě 3 meziproduktů, , které se následně používají k výrobě 3 druhů výrobků, .
Matice a udávají množství surovin potřebných pro výrobu meziproduktů, respektive množství meziproduktů potřebných pro výsledné výrobky. Například k výrobě jednoho meziproduktu je třeba jedna jednotka suroviny , dvě jednotky , žádné a jedna jednotka , což odpovídá prvnímu sloupci matice .
Součin pak přímo udává množství surovin potřebných pro výrobu jednotlivých výrobků. Například prvek v levém dolním rohu je vypočítán jako , což odpovídá tomu, že jednotek je potřeba k výrobě jednoho výrobku . Jmenovitě jedna jednotka je třeba pro , 2 pro a pro každý ze dvou meziproduktů , které jsou potřeba pro jeden kus , viz obrázek.
Aby bylo možné vyrobit např. 100 výrobků , 80 a 60 , lze potřebné množství surovin vypočítat jako
tj. jednotek , jednotek , jednotek a jednotek .Matice součinu může být použita k výpočtu množství surovin i pro jiné počty výrobků.[3]
Vlastnosti
Rovnosti uvedené v následujících odstavcích platí, pokud mají výsledky operací smysl.
- Součin matice s jednotkovou maticí zprava i zleva má za výsledek matici , tj. .
- Maticový součin je asociativní, tedy .
- Maticový součin není komutativní, tedy existují příklady matic, pro něž platí .
- Maticový součin je distributivní vůči sčítání, tj. .
- Maticový součin je lineární vůči násobení skalárem (typicky reálné nebo komplexní číslo), tj. .
- Matice vzhledem k součinu mohou být dělitelé nuly, tj. součin dvou nenulových matic může být nulová matice, například
- .
- Součin matic typu a typu lze vyjádřit jako
- ,
kde jsou sloupce matice a řádky matice . (Neboli jsou sloupce .) Zde každý sčítanec je matice typu , protože sloupcové vektory odpovídají maticím o jednom sloupci.
- Transpozice součinu matic je součin transponovaných matic v opačném pořadí, tj.
- Inverzní matice součinu regulárních matic je součin inverzních matic v opačném pořadí, tj.
- Hermitovské sdružení (hermitovská transpozice) součinu matic je součin matic hermitovsky sdružených v opačném pořadí, tj.
- Maticový součin odpovídá skládání lineárních zobrazení, které matice reprezentují.
Součiny čtvercových matic
Mocniny matice
Čtvercovou matici lze umocnit na jakoukoli nezápornou celočíselnou mocninu tím, že ji opakovaně násobíme stejným způsobem jako u běžných čísel, konkrétně
Výpočet -té mocniny matice potřebuje maticových součinů, pokud se provádí triviálním algoritmem (opakované násobení). Protože to může být velmi časově náročné, obecně se dává přednost použití umocňování pomocí druhé mocniny, které vyžaduje nejvýše maticových součinů, a je tedy mnohem efektivnější.
Snadným případem umocňování je diagonální matice. Protože součin diagonálních matic se rovná prostému vynásobení odpovídajících diagonálních prvků dohromady, získáme -tou mocninu diagonální matice umocněním prvků na diagonále na -tou:
Regulární a singulární matice
Označme množinu čtvercových matic řádu s prvky z okruhu , což je v praxi často těleso.
V je součin definován pro každou dvojici matic. Toto dělá z okruh, který má jednotkovou matici za neutrální prvek.
Pokud je , mnoho matic nemá inverzní prvek vůči násobení, např. nulová matice. Pokud inverzní prvek existuje, značí se a nazývá se inverzní matice k matici . Splňuje:
Matice, která má inverzi, je regulární matice, někdy též invertibilní matice. Pokud inverzní matici nemá, nazývá se singulární matice.
Součin matic je regulární, právě když je každý z činitelů i regulární. V tomto případě platí
Determinant součinu
Determinant součinu čtvercových matic je součin jejich determinantů.
- .
Tento vztah platí kdykoli je komutativní okruh, jmenovitě i v tělesech.
Výpočetní složitost
Výpočetní složitost výše popsaného algoritmu je (počítáme čísel; pro každé potřebujeme aritmetických operací). Existují však algoritmy s nižší složitostí vhodné pro matice vyšších řádů. Nejpoužívanější z nich je Strassenův algoritmus se složitostí . Nižší složitost u tohoto algoritmu však získáváme za cenu snížené numerické stability. Asymptoticky nejrychlejší ze známých algoritmů je Coppersmithův-Winogradův algoritmus (), který je však použitelný až pro matice tak velkých řádů, že je nelze zpracovávat pomocí současných počítačů[4].
Teoreticky by se dala složitost ještě snížit, ale nikdy nemůže být menší než , protože je třeba spočítat čísel.
Hledání nejkratší cesty v grafu
Algoritmy pro násobení matic s malou výpočetní složitostí lze využít i pro hledání nejkratší cesty v grafu z každého do každého vrcholu. To má v nejjednodušší podobě složitost . V tomto případě se však nepoužívá zde popsané násobení matic, ale upravená verze, kde je místo sčítání výběr nejmenšího prvku a místo násobení sčítání, proto nelze použít například Strassenův algoritmus, který využívá operaci odčítání jako inverzní operaci ke sčítání, která k operaci není.
Graf lze popsat maticí vzdáleností . Pokud je pro výpočty operace sčítání dvou čísel definována jako jejich minimum, a místo násobení se použije sčítání, je možno matici nejkratších cest získat jako () kde je řád matice vzdáleností. Při reálném výpočtu není třeba cyklicky násobit původní maticí, ale vždy se vynásobí vzniklé výsledky - nejkratší cesty jsou získány po násobeních. Je-li použit pro násobení algoritmus se složitostí menší než , složitost hledání cest se tímto postupem sníží.
Odkazy
Reference
V tomto článku byl použit překlad textu z článku Matrix multiplication na anglické Wikipedii.
- ↑ Slovník školské matematiky. Praha: SPN, 1981. 240 s.
- ↑ a b ČSN EN ISO 80000-2 (011300). Veličiny a jednotky - Část 2: Matematika. Česká agentura pro standardizaci, 2020-11-01. detail.
- ↑ Peter Stingl. Mathematik für Fachhochschulen – Technik und Informatik. 5th. vyd. Munich: Carl Hanser Verlag, 1996. ISBN 3-446-18668-9. (German) Zde: příklad 5.4.10, s.205-206
- ↑ Robinson, Sara (2005), "Toward an Optimal Algorithm for Matrix Multiplication Archivováno 31. 3. 2010 na Wayback Machine.", SIAM News 38 (9), http://www.siam.org/pdf/news/174.pdf Archivováno 31. 3. 2010 na Wayback Machine.
Literatura
- BÄRTSCH, Hans-Jochen. Matematické vzorce. Praha: Academia, 2006. 832 s. ISBN 80-200-1448-9. Kapitola Matice, s. 180–198.
- BEČVÁŘ, Jindřich. Lineární algebra. 1. vyd. Praha: Matfyzpress, 2019. 436 s. ISBN 978-80-7378-392-1.
- HLADÍK, Milan. Lineární algebra (nejen) pro informatiky. 1. vyd. Praha: Matfyzpress, 2019. 328 s. ISBN 978-80-7378-378-5. S. 39.
- OLŠÁK, Petr. Lineární algebra [online]. Praha: 2007 [cit. 2023-02-20]. Dostupné online.
- MOTL, Luboš; ZAHRADNÍK, Miloš. Pěstujeme lineární algebru [online]. [cit. 2023-02-20]. Dostupné online.
Související články
- Hadamardův součin
- Skalární součin, Vnitřní součin
- Smíšený součin
- Strassenův algoritmus
- Tenzorový součin, Vnější součin
- Vektorový součin, Dvojitý vektorový součin
Externí odkazy
- Obrázky, zvuky či videa k tématu násobení matic na Wikimedia Commons
- Lineární algebra: algebra matic Archivováno 16. 2. 2009 na Wayback Machine. Aplikace, která násobí a sčítá matice zadané uživatelem a zobrazuje postup výpočtu.
Média použitá na této stránce
Autor: Jochen Burghardt, Licence: CC BY-SA 4.0
Example application of matrix multiplication in economics, see Pdf version for details, including source code.
Autor: Bilou, Licence: CC BY-SA 3.0
Schematic multiplication of two matrices