Normála daného n−1 dimenzionálníhopodprostoru v n-dimenzionálním prostoru je přímkakolmá na daný podprostor. Vektor určující směr normály se nazývá normálový vektor. V rovinném případě je to vektor kolmý na přímku, v prostorovém případě je to vektor kolmý na rovinu.
Obecněji lze v jednotlivých bodech určovat i normály jiných spojitých n−1 rozměrných útvarů – tzv. nadploch. Například v rovině ke křivkám nebo v prostoru k plochám. Normála je pak normálou tečného podprostoru v daném bodě a určuje orientaci nadplochy.
Lze také určovat normály k útvarům nižší dimenze, např. k prostorové křivce. V takovém případě však normála není určena jednoznačně. Všechny normály v daném bodě pak tvoří normálový prostor, např. v případě prostorové křivky tvoří všechny normály normálovou rovinu.
Normála plochy
Je-li rovina dána rovnicí, potom je její normálový vektorn roven .
Je-li plocha dána jako množina bodů splňujících rovnici :, potom určíme vektor normály až na znaménko jako gradientF:
.
Normála křivky
Všechny přímky, které prochází daným bodem křivky, kde je oblouk křivky, a jsou kolmé na tečný vektor v tomto bodě, se označují jako normály křivky v daném bodě.
Hlavní (první) normálou křivky se nazývá přímka, která je její normálou v daném bodě a jejíž směr je určen vektorem .
Jednotkový vektor, který má stejný směr jako vektor , se nazývá jednotkový vektor hlavní (první) normály. Hlavní normála je definována pokud v daném bodě křivky platí .
Jednotkový vektor hlavní normály lze pomocí Frenetových vzorců vyjádřit jako