Oxid dusný
Oxid dusný | |
---|---|
3D model molekuly N2O | |
3D schéma molekuly N2O | |
2D schéma molekuly N2O | |
Obecné | |
Systematický název | Oxid dusný |
Triviální název | Rajský plyn, azooxid, Nitro |
Anglický název | Nitrous oxide |
Německý název | Distickstoffmonoxid |
Sumární vzorec | N2O |
Vzhled | Bezbarvý plyn |
Identifikace | |
Registrační číslo CAS | 10024-97-2 |
PubChem | 948 |
ChEBI | 17045 |
UN kód | 1070 (stlačený) 2201 (kapalný) |
Číslo RTECS | QX1350000 |
Vlastnosti | |
Molární hmotnost | 44,013 g/mol |
Teplota tání | −102,4 °C |
Teplota varu | −88,48 °C |
Hustota | 1,225 7 g/cm3 (kapalina, tv) 1,977 8 kg/m3 (plyn, 0 °C)[1] |
Dynamický viskozitní koeficient | 0,013 7 cP (0 °C) 0,018 3 cP (100 °C) 0,022 5 cP (200 °C) 0,030 3 cP (400 °C) |
Index lomu | nD= 1,000 5 |
Kritická teplota Tk | +36,43 °C |
Kritický tlak pk | 7 255 kPa |
Kritická hustota | 0,453 g/cm3 |
Rozpustnost ve vodě | 130 ml/100 g (0 °C) 87,8 ml/100 g (10 °C) 63 ml/100 g (20 °C) 56,7 ml/100 g (25 °C) |
Relativní permitivita εr | 1,001 03 |
Van der Waalsovy konstanty stavové rovnice | a= 0,383 2 Pa m6 mol−2 b= 44,15×10−6 m3 mol−1 |
Ionizační energie | 12,894 eV |
Struktura | |
Krystalová struktura | krychlová |
Tvar molekuly | lineární |
Dipólový moment | 0,166 D |
Termodynamické vlastnosti | |
Standardní slučovací entalpie ΔHf° | 82,09 kJ/mol |
Entalpie tání ΔHt | 148,6 J/g |
Entalpie varu ΔHv | 376,3 J/g |
Standardní molární entropie S° | 219,8 J K−1 mol−1 |
Standardní slučovací Gibbsova energie ΔGf° | 104,1 kJ/mol |
Izobarické měrné teplo cp | 0,874 0 J K−1 g−1 |
Bezpečnost | |
[2] Nebezpečí[2] | |
R-věty | R8 |
S-věty | S9,S17,S38 |
NFPA 704 | |
Některá data mohou pocházet z datové položky. |
Oxid dusný, triviálním názvem rajský plyn či azoxid, v medicíně nazývaný Nitrogenium oxydulatum nebo Dinitrogenii oxidum, je za laboratorních podmínek bezbarvý, nehořlavý plyn s nevýraznou, ale příjemnou vůní a nasládlou chutí.
Oxid dusný jako třetí nejdůležitější skleníkový plyn s dlouhou životností významně přispívá ke globálnímu oteplování.[3]
Příprava
Oxid dusný se připravuje tepelným rozkladem dusičnanu amonného:
- NH4NO3 → N2O + 2 H2O.
Tato reakce je silně exotermní, při lokálním přehřátí může probíhat až explozivně; to je i podstatou průmyslových trhavin na bázi dusičnanu amonného.
Mnohem bezpečnější je příprava zahříváním směsi alkalického dusičnanu (např. dusičnanu sodného) se síranem amonným
- 2 NaNO3 + (NH4)2SO4 → Na2SO4 + 2 N2O + 4 H2O,
nebo redukcí kyseliny dusičné například chloridem cínatým za přítomnosti kyseliny solné
- 2 HNO3 + 4 SnCl2 + 8 HCl → 4 SnCl4 + N2O + 5 H2O,
nebo zinkem za přítomnosti kyseliny sírové
- 2 HNO3 + 4 Zn + 4 H2SO4 → 4 ZnSO4 + N2O + 5 H2O.
Chemické vlastnosti
Molekula oxidu dusného je lineární (grupa symetrie C∞v). Na základě výpočtů byl určen řád vazby N–N 2,73 a N–O 1,61, což znamená, že vazba mezi dusíkovými atomy leží mezi dvojnou a trojnou vazbou, zatímco mezi kyslíkovým a dusíkovým atomem mezi jednoduchou a dvojnou vazbou. Proto strukturní vzorec N2O musí být zobrazován dvěma krajními mezomerními stavy. Jeho elektronová struktura je velmi blízká (téměř izoelektronová) struktuře molekuly oxidu uhličitého CO2.
Jeho reaktivita je za normální teploty nízká. Po zahřátí na 600 °C se však rozkládá na dusík a kyslík. Protože v prvním stupni tohoto rozkladu vzniká molekulární dusík a atomární kyslík
- 2 N2O → 2 N2 + 2 O → 2 N2 + O2,
působí za těchto vyšších teplot jako velmi silné oxidační činidlo. To vede k některým jeho aplikacím.
Působením elektrického výboje se dá směs plynného oxidu dusného s vodíkem přivést k explozivní reakci
- N2O + H2 → N2 + H2O.
Vzhledem k tomu, že se při této reakci prakticky nemění objem, nemá tato exploze velkou brizanci.
Environmentální vlivy
Skleníkový jev
Oxid dusný má jako skleníkový plyn významný potenciál globálního oteplování. V přepočtu na jednu molekulu a na období 100 let má oxid dusný 265krát větší schopnost zachycovat teplo v atmosféře než oxid uhličitý (CO2).[4] Vzhledem k jeho nízké koncentraci (méně než 1/1 000 koncentrace CO2), je jeho příspěvek ke skleníkovému efektu méně než třetinový ve srovnání s oxidem uhličitým a také menší než u vodní páry a metanu.[5] Na druhou stranu, protože přibližně 40 % oxidu dusného vstupuje do atmosféry v důsledku lidské činnosti,[6] je kontrola oxidu dusného považována za součást úsilí o omezení emisí skleníkových plynů.[7]
Většina oxidu dusného uvolňovaného do atmosféry v důsledku lidské činnosti pochází ze zemědělství, kdy zemědělci přidávají na pole hnojiva na bázi dusíku, a z rozkladu zvířecího hnoje. Snižování emisí může být horkým tématem v politice změny klimatu.[8]
Oxid dusný se uvolňuje také jako vedlejší produkt spalování fosilních paliv, i když množství uvolněného oxidu dusného závisí na tom, jaké palivo bylo použito. Uvolňuje se také při výrobě kyseliny dusičné, která se používá při syntéze dusíkatých hnojiv. Při výrobě kyseliny adipové, která je prekurzorem nylonu a dalších syntetických oděvních vláken, se také uvolňuje oxid dusný.[9]
Vliv na ozonovou vrstvu Země
Oxid dusný se také podílí na ztenčování ozonové vrstvy. Studie z roku 2009 naznačuje, že N2O jsou nejvýznamnější emisí poškozující ozonovou vrstvu a očekává se, že zůstanou největší po celé 21. století. Je to způsobeno tím, že se ozonem oxiduje:
Účinky na lidské zdraví
Vdechování působí nejprve stavy veselosti (odtud název rajský plyn) nebo hysterie, při vyšších dávkách útlum až anestetický spánek. Dlouhodobé nebo intenzivní vdechování však může vést k zástavě dýchání, nebo přílišnému útlumu srdeční činnosti, případně až k zástavě srdce, v obou případech s následkem smrti.
Využití
- V medicíně se dříve používal ve směsi s kyslíkem (85 % N2O + 15 % O2) jako anestetikum ke krátkodobým narkózám; dnes aplikován dávkovacím zařízením (např. Entonox) zajišťujícím bezpečnost se může používat v porodnictví nebo ve stomatologii.
- Používá se jako hnací plyn v bombičkách na přípravu šlehačky (v Evropské unii pod kódem přídatné látky E 942). K tomuto je vhodný pro svoji rozpustnost v tucích, kterou ostatní zvažované hnací plyny postrádají.[12]
- V raketových motorech, zejména hybridních, slouží jako oxidační činidlo.
- V některých případech (dragstery) se vstřikuje do spalovacích motorů pro zvýšení výkonu, protože jeho rozkladem se získá více kyslíku než ze vzduchu. Také ho z tohoto důvodu používají nelegální závodníci.
- Ze stejných důvodů se využívá v analytické chemii v metodě atomové absorpční spektrometrie (AAS) jako oxidační plyn při spalování ethynu namísto vzduchu. Je tak možno dosáhnout plamene o teplotě téměř 3000 °C a analyzovat tak prvky s velmi stabilními oxidy, např. hliník nebo titan.
- V gastronomii se nově používá k přípravě espum.[13]
Historická poznámka
Oxid dusný pozoroval poprvé John Mayow v roce 1669 a později Joseph Priestley v roce 1772. O dvacet let později Humphry Davy stanovil jeho složení a testoval jej na sobě a přátelích. Výsledkem těchto testů bylo objevení narkotických vlastností oxidu dusného, což vedlo k jeho používání v humánní medicíně.
Při porodech byl poprvé použit jako anestetikum S. Klikovičem v roce 1880 v Petrohradu. Většího rozšíření v porodnictví doznal však až po roce 1915.
Za druhé světové války oxid dusný používala německá stíhací letadla s pístovými motory. Systém krátkodobého zvýšení výkonu motoru GM-1 měl za cíl dát pohonné jednotce větší výkon při operacích ve vyšších letových hladinách pomocí vstřikování směsi zkapalněného oxidu dusíku do kompresoru.[14]
Odkazy
Reference
- ↑ NITROUS OXIDE | 10024-97-2. www.chemicalbook.com [online]. [cit. 2020-11-29]. Dostupné online.
- ↑ a b Nitrous oxide. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-23]. Dostupné online. (anglicky)
- ↑ Thompson, R.L., Lassaletta, L., Patra, P.K. et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Chang. (2019) doi:10.1038/s41558-019-0613-7
- ↑ Nitrous oxide: Laughing gas users risk spine damage, say doctors. BBC News. 2023-02-23. Dostupné online [cit. 2023-10-15]. (anglicky)
- ↑ Climate Change Indicators: Atmospheric Concentrations of Greenhouse Gases. www.epa.gov [online]. [cit. 2023-10-15]. Dostupné online.
- ↑ K. L. Denman, G. Brasseur, et al. (2007), "Couplings Between Changes in the Climate System and Biogeochemistry". In Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
- ↑ "4.1.1 Sources of Greenhouse Gases". IPCC TAR WG1 2001. Archived from the original on 29 October 2012. Retrieved 21 September 2012.
- ↑ MUNDSCHENK, Susanne. The Netherlands is showing how not to tackle climate change. The Spectator [online]. 2022-08-03 [cit. 2023-10-15]. Dostupné online. (anglicky)
- ↑ US EPA, OA. Overview of Greenhouse Gases. 19january2017snapshot.epa.gov [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)
- ↑ RAVISHANKARA, A. R.; DANIEL, John S.; PORTMANN, Robert W. Nitrous Oxide (N 2 O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science. 2009-10-02, roč. 326, čís. 5949, s. 123–125. Dostupné online [cit. 2023-10-15]. ISSN 0036-8075. DOI 10.1126/science.1176985. (anglicky)
- ↑ GROSSMAN, Lisa. Laughing gas is biggest threat to ozone layer. New Scientist [online]. [cit. 2023-10-15]. Dostupné online. (anglicky)
- ↑ Nitrous Oxide in Whipped Cream [online]. [cit. 2018-03-07]. Dostupné online.
- ↑ Espuma kráčí Evropou (hit v oblasti studené kuchyně). Labužník.cz [online]. [cit. 2024-03-20]. Dostupné online.
- ↑ Kurfürst - Kurz-Betriebsanleitung für Flugzeugführer und Bodenpersonal für GM 1-Anlagen in Bf 109 G.. kurfurst.org [online]. [cit. 2024-03-20]. Dostupné online.
Literatura
- VOHLÍDAL, Jiří; ŠTULÍK, Karel; JULÁK, Alois. Chemické a analytické tabulky. 1. vyd. Praha: Grada Publishing, 1999. ISBN 80-7169-855-5.
- BLACKAH, PAUL; LOWE, Malcolm V.; FERKL, Martin. Messerschmitt Bf 109 - Všechny verze od roku 1935. [s.l.]: Grada Publishing, 2011. ISBN 978-80-247-3522-1.
Externí odkazy
- Obrázky, zvuky či videa k tématu oxid dusný na Wikimedia Commons
- Slovníkové heslo oxid dusný ve Wikislovníku
- (anglicky) Nitro Oxid System u spalovacích motorů
- (anglicky) Nitrous oxide fingered as monster ozone slayer, Science News
- (česky) Oxid dusný – Integrovaný registr znečišťování
- (německy) Messerschmitt Bf 109 – Operační manuál pro piloty a pozemní personál pro GM-1 systém v Bf 109 G
Média použitá na této stránce
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for oxidizing substances
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for gases under pressure
The "fire diamond" as defined by NFPA 704. It is a blank template, so as to facilitate populating it using CSS.
Ball-and-stick model of nitrous oxide, N2O, with interatomic distances labelled
Space-filling model of nitrous oxide, N2O
Noz Chargers
Structural formulae of the canonical forms of nitrous oxide, N2O