Oxid uhelnatý
Oxid uhelnatý | |
---|---|
Schéma molekuly oxidu uhelnatého | |
Obecné | |
Systematický název | oxid uhelnatý |
Latinský název | Carbonii monoxidum Monoxidum carbonis |
Anglický název | Carbon monoxide |
Německý název | Kohlenstoffmonoxid |
Sumární vzorec | CO |
Vzhled | bezbarvý jedovatý plyn bez zápachu |
Identifikace | |
Registrační číslo CAS | 630-08-0 |
EC-no (EINECS/ELINCS/NLP) | 211-128-3 |
Indexové číslo | 006-001-00-2 |
PubChem | 281 |
ChEBI | 17245 |
UN kód | 1016 |
SMILES | [C-]#[O+] |
InChI | InChI=1S/CO/c1-2 |
Číslo RTECS | FG3500000 |
Vlastnosti | |
Molární hmotnost | 28,010 1 g/mol |
Teplota tání | −205 °C (68 K) |
Teplota varu | −191,5 °C (81 K) |
Hustota | 789 kg/m³, (kapalný, tv) 0,001 25 g/cm³ (0 °C) 0,001 145 g/cm³ (25 °C) |
Dynamický viskozitní koeficient | 0,005 61 cP (plyn, tv) 0,012 7 cP (−78,5 °C) 0,016 6 cP (0 °C) 0,021 8 cP (126 °C) 0,025 5 cP (227 °C) |
Index lomu | nD= 1,000 34 (0 °C) |
Kritická teplota Tk | −140,23 °C |
Kritický tlak pk | 3 499 kPa |
Kritická hustota | 0,301 g/cm3 |
Rozpustnost ve vodě | 3,5 cm3/100 g (0 °C) 2,82 cm3/100 g (10 °C) 2,32 cm3/100 g (20 °C) 2,14 cm3/100 g (25 °C) 2,00 cm3/100 g (30 °C) 1,77 cm3/100 g (40 °C) 1,49 cm3/100 g (60 °C) 1,43 cm3/100 g (80 °C) 1,40 cm3/100 g (100 °C) |
Rozpustnost v polárních rozpouštědlech | karbonylové sloučeniny estery alkoholy |
Relativní permitivita εr | 1,000 634 |
Van der Waalsovy konstanty stavové rovnice | a= 0,148 5 Pa m6 mol−2 b= 39,85 m3 mol−1 |
Součinitel tepelné vodivosti | 0,020 0 W m−1 K−1 (−40 °C) 0,021 8 W m−1 K−1 (−17 °C) 0,023 4 W m−1 K−1 (4,4 °C) 0,025 1 W m−1 K−1 (27 °C) 0,026 8 W m−1 K−1 (49 °C) |
Ionizační energie | 14,013 eV |
Struktura | |
Dipólový moment | 0,374×10−30 C·m |
Termodynamické vlastnosti | |
Standardní slučovací entalpie ΔHf° | −110,53 kJ/mol −121 kJ/mol (vodný roztok) |
Entalpie tání ΔHt | 29,8 J/g |
Entalpie varu ΔHv | 215,6 J/g |
Standardní molární entropie S° | 197,556 J/mol·K 105 J/mol·K (vodný roztok) |
Standardní slučovací Gibbsova energie ΔGf° | −137,15 kJ/mol −199,9 kJ/mol (vodný roztok) |
Izobarické měrné teplo cp | 1,039 5 J K−1 g−1 |
Izochorické měrné teplo cV | 0,741 J K−1 g−1 |
Bezpečnost | |
[1] Nebezpečí[1] | |
H-věty | H220 H360D H331 H372 |
R-věty | R12, R23, R33, R48, R61 |
S-věty | S9, S16, S33, S45, S53 |
NFPA 704 | |
Teplota vzplanutí | − 191 °C |
Teplota vznícení | 609 °C |
Některá data mohou pocházet z datové položky. |
Oxid uhelnatý (starší terminologií kysličník uhelnatý) je bezbarvý jedovatý plyn bez chuti a zápachu, nedráždivý. Ve vodě je málo rozpustný. Je obsažen ve svítiplynu, v generátorovém a ve vodním plynu; má silně redukční vlastnosti. V přírodě je přítomen v nepatrném množství v atmosféře, kde vzniká především fotolýzou oxidu uhličitého působením ultrafialového záření, jako produkt nedokonalého spalování fosilních paliv i biomasy. Je také obsažen v sopečných plynech. V mezihvězdném prostoru se vyskytuje ve značném množství. Byl nalezen i v atmosféře Marsu (0,08 %) a spektroskopicky prokázán v komě komet.
Vznik
Vzniká z kyslíkatých organických látek rozkladem při vysokých teplotách. Např. při koksování uhlí. Nad 600 °C vzniká i při spalování ochotněji než oxid uhličitý.
Ve vysoké peci se získává vysokoteplotním spalováním koksu:
- 2 C + O2 → 2 CO
Endotermní reakcí vodní páry s koksem za vysokých teplot se vyráběl vodní plyn jako ušlechtilé palivo nebo zdroj vodíku:
- C + H2O → CO + H2
Vzniká také při výrobě vodíku parním reformováním methanu endotermní reakcí okolo 1000 °C:
- CH4 + H2O → 3 H2 + CO
Následně se ale spotřebovává konverzí pod 600 °C, kdy redukuje vodní páru:
- CO + H2O → H2 + CO2
V nepatrném množství vzniká i metabolickými procesy v živých organismech a proto je obsažen ve stopových množstvích ve vydechovaném vzduchu z plic.
Vlastnosti
S kyslíkem hoří namodralým plamenem na oxid uhličitý:
- 2 CO + O2 → 2 CO2
za uvolnění značného množství tepla. Ve směsi, obsahující od 12,5 do 74,2 % [2] oxidu uhelnatého ve vzduchu, reakce probíhá jako výbuch. I při nižší koncentraci tato reakce probíhá dobře na katalyzátoru výfukových plynů.
CO má podobnou hustotu jako vzduch, nepatrně nižší (97 %).
Využití
Oxid uhelnatý se dříve používal jako plynné palivo (například součást svítiplynu). Jeho směs s vodíkem (vodní plyn) byl jedním z meziproduktů používaných v těžkém chemickém a potravinářském[3] průmyslu. Při výrobě železa vzniká oxid uhelnatý z uhlíku v koksu a spolu s ním funguje jako redukční činidlo.
Zdroje oxidu uhelnatého a jeho výskyt v ovzduší
Vzhledem k jedovatosti je jednou z významných znečišťujících látek. Vzniká při vysokoteplotním spalování uhlíku a organických látek. Je emitován např. automobily, lokálními topeništi, energetickým a metalurgickým průmyslem.
CO vzniká zejména pokud:
- je teplota spalování příliš nízká, než aby mohlo dojít k úplné oxidaci pohonných látek na oxid uhličitý,
- čas hoření ve spalovací komoře je příliš krátký,
- není k dispozici dostatek kyslíku.
Díky povinnému zavedení řízených katalyzátorů u vozidel s benzínovými motory se emise oxidu uhelnatého v poslední době snižují.
V roce 2005 v České republice nepřekračovaly pozaďové koncentrace 300 µg/m3. V Praze činily roční aritmetické průměry v oblastech zatížených dopravou přibližně 1.000 µg/m3.[4]
Při používání zemního plynu k vaření v domácnostech je koncentrace CO v domácím ovzduší průměrně cca 2.900 µg/m3 [5].
Kouření
Významným zdrojem oxidu uhelnatého je kouření. Lidé kouřící cca 20 cigaret denně mají asi 4 až 7 % krevního hemoglobinu zablokováno působením CO.[4] Při pasivním kouření je člověk vystaven koncentracím okolo 1.700 µg/m3 [5].
Účinky na živé organismy
Toxicita
Oxid uhelnatý je značně jedovatý; jeho jedovatost je způsobena silnou afinitou k hemoglobinu (krevnímu barvivu), s nímž vytváří karboxyhemoglobin (COHb), čímž znemožňuje přenos kyslíku v podobě oxyhemoglobinu z plic do tkání. Vazba oxidu uhelnatého na hemoglobin je přibližně dvousetkrát silnější než kyslíku, a proto jeho odstranění z krve trvá mnoho hodin až dní. Příznaky otravy se objevují již při přeměně 10 % hemoglobinu na karboxyhemoglobin.
Otrava oxidem uhelnatým
Oxid uhelnatý blokuje přenášení kyslíku krví, neboť jeho vazba s hemoglobinem je 200× až 300× pevnější než vazba kyslíku a z hemoglobinu se stává karboxyhemoglobin. Otrava CO se vyskytuje např. v uzavřených prostorech, kde běží spalovací motory nebo při špatném odvětrání plynových spotřebičů. První pomoc spočívá v přerušení kontaktu (vyvětrat, vynést z prostoru), dále podání kyslíku a pokud došlo k zástavě oběhu, je třeba resuscitovat.
Oxidem uhelnatým (ve svítiplynu) se otrávil například skladatel a zpěvák Jiří Šlitr.[6]
Signalizační molekula
Oxid uhelnatý patří spolu s oxidem dusnatým a sulfanem ke gasotransmiterům; působí (podobně jako oxid dusnatý) jako relaxant na hladkosvalové buňky ve stěnách cév (vasodilatační účinek). Oxid uhelnatý vzniká endogenně degradací hemu hemoxygenázou (HMOX), což vede k fyziologickým koncentracím v krvi ve vysokém mikromolárním rozmezí ve formě vázané na hemoglobin známé jako karbonylhemoglobin (COHb).
Odkazy
Reference
- ↑ a b Carbon monoxide. pubchem.ncbi.nlm.nih.gov [online]. PubChem [cit. 2021-05-23]. Dostupné online. (anglicky)
- ↑ http://www.biotox.cz/toxikon/anorgan/ja_4a.php – IV.A skupina - skupina uhlíku
- ↑ Spotřebitelé jí maso ošetřené jedovatým plynem
- ↑ a b Miroslav Šuta: Účinky výfukových plynů z automobilů na lidské zdraví (druhé, přepracované a doplněné vydání, Děti Země 2008, ISBN 80-86678-10-5
- ↑ a b Carbon Monoxide - International Programme on Chemical Safety - Environmental Health Criteria 213. www.inchem.org [online]. [cit. 2009-09-18]. Dostupné v archivu pořízeném dne 2013-11-04.
- ↑ Svítiplynem se otrávil skladatel Jiří Šlitr - Česká televize
Literatura
- VOHLÍDAL, Jiří; ŠTULÍK, Karel; JULÁK, Alois. Chemické a analytické tabulky. 1. vyd. Praha: Grada Publishing, 1999. ISBN 80-7169-855-5.
Související články
Externí odkazy
- Obrázky, zvuky či videa k tématu oxid uhelnatý na Wikimedia Commons
- (česky) Už víte vše o otravě oxidem uhelnatým? – Informační servis ČSTZ 2/2006
- (česky) Oxid uhelnatý zabíjí...
Média použitá na této stránce
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for toxic substances
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for substances hazardous to human health.
The "fire diamond" as defined by NFPA 704. It is a blank template, so as to facilitate populating it using CSS.
The MOPITT sensor aboard NASA’s Terra satellite has assembled the first view of carbon monoxide in the Earth's atmosphere.
The false colors represent levels of carbon monoxide in the lower atmosphere, ranging from about 390 parts per billion (dark brown pixels), to 220 parts per billion (red pixels), to 50 parts per billion (blue pixels).
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) pictogram for flammable substances