Pliniovská erupce

1. erupční sloupec, 2. přívod magmatu, 3. sopečný spad, 4. vrstvy lávy a popela, 5. podložní nevulkanické vrstvy původních hornin, 6. magmatický krb.

Pliniovská erupce je extrémně explozivní typ sopečné erupce. V podstatě se jedná o nejničivější a energeticky nejmohutnější typ. Délka jejího trvání se pohybuje v řádu hodin nebo několika dnů. Je velmi bohatá na plyny a na značně viskózní intermediální či felsická magmata dacitovéhoryolitového složení (čedičové je poměrně neobvyklé).[1]

Etymologie

Typ erupce nese jméno po Pliniu mladším. Ten byl svědkem slavné erupce Vesuvu roku 79, jež zničila římská města Pompeje a Herculaneum. Ve svém dopise pro Tacita připodobnil erupční sloupec ke středomořské borovici.[2] Navíc chronologickým popisem jednotlivých fází erupce položil nejenom první základy vulkanologie, ale také pomohl současným vulkanologům pochopit průběh erupce a ověřit jejich stratigrafický průzkum sopečných uloženin kolem Vesuvu.[3]

Charakteristika

Prvním charakteristickým znakem pliniovských erupcí je vysoký erupční sloupec, skládající se z velmi horké směsi plynů, popela a pemzy. Jeho výška mnohdy překračuje 30 km, výjimečně může penetrovat stratopauzu, proniknout až do mezosféry a dosáhnout výšky 55 km. V těchto výškách se jeho stoupání zastavuje a nastává horizontální šíření v závislosti na rychlosti a směru větru, čímž nabývá tvaru připomínající deštník. Zemský povrch pod tímto větrem hnaným sopečným mrakem je zasypáván pyroklastiky (sopečným popelem, struskou a kusy pemzy). Tento jev se označuje jako sopečný spad, přičemž tloušťka naakumulované vrstvy se zvyšuje se zmenšující se vzdáleností ke zdroji erupce. Stabilitu sloupce udržuje jeho vlastní silné konvekční proudění a rychlost stoupání činí 150–600 m/s. Během hlavní fáze je vulkán schopný chrlit milion až 100 milionů tun materiálu za vteřinu.[1] Jakmile dojde k oslabení konvekčního proudění ve sloupci, nastává jeho částečný nebo úplný gravitační kolaps.[4] Materiál, který ho tvořil má totiž vyšší hustotu než okolní vzduch, takže se velkou rychlosti de facto „rozleje“ po svazích dolů v podobě extrémně nebezpečných pyroklastických proudů nebo pyroklastických přívalů, společně označované zkratkou PDC (Pyroclastic density current).[5][6] Cyklus zformování sloupce a jeho zhroucení se může několikrát opakovat. Druhým charakteristickým znakem tohoto typu erupcí je velké množství vyvrženého materiálu. Nízkoenergetický druh, zvaný subplinovský, produkuje 0,1–1 km³ sopečného materiálu. Erupční sloupec obecně neproniká do stratosféry. Zároveň je vlivem slabé konvekce nestabilní a podstupuje opakované kolapsy a dochází tak k tvorbě nízkoobjemových PDC. Klasická pliniovská erupce zpravidla vyvrhne 1–10 km³. Oproti tomu ultrapliniovská erupce je schopná vyvrhnout více než 10 km³. Lze se rovněž setkat se speciálním termínem freatopliniovská erupce, pro kterou je typický velmi vysoký erupční sloupec.[7] Například při erupci tichomořské sopky Hunga Tongy 15. ledna 2022 dosáhl erupční sloupec výšky 58 km.[8][9] Třetí charakteristický znak pro pliniovské erupce je vznik kaldery. Při vyvržení více než několik km³ vulkanického materiálu dochází velmi často k propadu nadložních vrstev do částečně vyprázdněného magmatického krbu, což se na povrch projeví kolapsem a úplným zánikem původního sopečného tělesa a tudíž vzniku několik kilometrů široké kaldery. Obecně jsou pliniovské erupce oproti jiným typům erupcí poměrně vzácné. Mají značný potenciál ovlivnit globální klima.[1]

Příklady některých historických erupcí

Galerie

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Plínijská erupcia na slovenské Wikipedii.

  1. a b c Haraldur Sigurðsson. The Encyclopedia of Volcanoes. [s.l.]: Academic Press, 2015. 1456 s. ISBN 978-0-12-385938-9. (angličtina) 
  2. Plinius mladší. Dopisy. [s.l.]: Svoboda, 1988. 392 s. Dostupné online. 
  3. Robert Peckyno. Who was the first volcanologist?. https://volcano.oregonstate.edu [online]. 2010-05-06. Dostupné online. 
  4. National Park Service. Pyroclastic Flows and Ignimbrites, and Pyroclastic Surges. https://www.nps.gov [online]. Dostupné online. 
  5. Volcanics in outcrop: Pyroclastic density currents. https://www.geological-digressions.com [online]. Dostupné online. 
  6. USGS. Pyroclastic flows move fast and destroy everything in their path. https://www.usgs.gov [online]. Dostupné online. 
  7. Timothy M. Kusky. Déjà vu: Might Future Eruptions of Hunga Tonga-Hunga Ha’apai Volcano be a Repeat of the Devastating Eruption of Santorini, Greece (1650 BC)? [online]. Journal of Earth Science, 2022-01-29. Dostupné online. (angličtina) 
  8. earth observatory. Tonga Volcano Plume Reached the Mesosphere. https://earthobservatory.nasa.gov/ [online]. 2022-01-15. Dostupné online. 
  9. David A. Yuen a spol. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha'apai volcano [online]. Earthquake Research Advances, 2022-07. Dostupné online. (angličtina) 

Literatura

  • Haraldur Sigurðsson. The Encyclopedia of Volcanoes. [s.l.]: Academic Press, 2015. 1456 s. ISBN 978-0-12-385938-9. (angličtina) 

Související články

Externí odkazy

Média použitá na této stránce

MtStHelens Mushroom Cloud.jpg
Autor: Rocky Kolberg, Licence: CC BY-SA 3.0
Mt. St. Helens mushroom cloud, 40 miles wide and 15 miles high. Camera location: Toledo, Washington, 35 miles west-northwest of the mountain. The picture is a composite of about 20 separate images.
Calbuco22-4-15.jpg
Autor: Aeveraal, Licence: CC BY-SA 4.0
Eruption of Calbuco seen from the city Puerto Varas.
Erupción Volcán Calbuco (17062565578).jpg
Autor: Carolina Barría Kemp, Licence: CC BY-SA 2.0

Puerto Montt, Región de Los Lagos, Chile 22/04/2015

Puerto Montt City, Lakes District, Chile 04/22/2015
Vesuvius1822scrope.jpg
"The Eruption of Vesuvius as seen from Naples, October 1822" published by V. Day & Son.
MtRedoubtedit1.jpg
Picture of Mount Redoubt eruption. Ascending eruption cloud from Redoubt Volcano as viewed to the west from the Kenai Peninsula. The mushroom-shaped plume rose from avalanches of hot debris (pyroclastic flows) thhh jbhat cascaded down the north flank of the volcano. A smaller, white steam plume rises from the summit crater.
MSH80 eruption mount st helens 05-18-80-dramatic-edit.jpg
On May 18, 1980, at 8:32 a.m. Pacific Daylight Time, a magnitude 5.1 earthquake shook Mount St. Helens. The bulge and surrounding area slid away in a gigantic rockslide and debris avalanche, releasing pressure, and triggering a major pumice and ash eruption of the volcano. Thirteen-hundred feet (400 meters) of the peak collapsed or blew outwards. As a result, 24 square miles (62 square kilometers) of valley was filled by a debris avalanche, 250 square miles (650 square kilometers) of recreation, timber, and private lands were damaged by a lateral blast, and an estimated 200 million cubic yards (150 million cubic meters) of material was deposited directly by lahars (volcanic mudflows) into the river channels. Fifty-seven people were killed or are still missing. USGS Photograph taken on May 18, 1980, by Austin Post.
Plinian Eruption-numbers.svg
© Sémhur / Wikimedia Commons, CC BY-SA 4.0
Scheme of a plinian eruption.
  • 1. Ash plume
  • 2. Magma conduit
  • 3. Volcanic ash fall
  • 4. Layers of lava and ash
  • 5. Stratum
  • 6. Magma chamber
  • Pinatubo91eruption clark air base.jpg
    The June 12, 1991 eruption column from Mount Pinatubo taken from Clark Air Base.