Redukující sacharidy
Redukující sacharidy jsou sacharidy, které mohou fungovat jako redukční činidla, protože mají volnou aldehydovou nebo ketonovou funkční skupinu.[1]
Ketózy se musí tautomerizovat na aldózy, aby mohly mít redukční účinky.
Redukující jsou všechny monosacharidy a také některé disacharidy a další oligosacharidy i polysacharidy, pokud mají poloacetalový hydroxyl. Neredukující oligo- a polysacharidy nemají poloacetal a tak se nemohou přeměnit na necyklickou formu s aldehydovou/ketonovou skupinou; zůstávají tedy v cyklické podobě. Redukující oligosacharidy nemají na glykosidové vazby využity všechny poloacetalové hydroxyly a tak zůstává některý z nich (vždy na jednom z koncových monosacharidů) volný.
Redukující sacharidy reagují při tepelné úpravě jídla s aminokyselinami v Maillardově reakci za vzniku mnoha různých látek, z nichž některé určují vůni jídla.
Příklady
Všechny monosacharidy jsou redukující, neboť mají aldehydovou (a patří tedy mezi aldózy) skupinu, nebo mají ketonovou skupinu a mohou se tautomerizovat.[2] Patří sem například galaktóza, glukóza, glyceraldehyd, fruktóza a ribóza.
Mnoho disacharidů jako celobióza, laktóza a maltóza jsou také redukující, protože jedna ze dvou jednotek může otevřít řetězec a vytvořit necyklickou aldehydovou formu.[3]
Sacharóza a trehalóza jsou neredukující, protože jsou v nich vazbou spojeny oba anomerické uhlíky, takže se žádný z cyklů nemůže otevřít.[2]
U polymerů glukózy jako jsou škrob a jeho deriváty, například maltodextrin a dextrin, makromolekula začíná redukujícím sacharidem s volnou aldehydovou skupinou. Produkty jejich hydrolýzy obsahují více redukujících sacharidů, zastoupení redukujících sacharidů v těchto produktech se nazývá dextrózový ekvivalent (DE).
Glykogen je velmi rozvětvený polymer glukózy, jenž je zásobním sacharidem živočichů. Je to redukující polysacharid s pouze jedním redukujícím koncem, každá větev má neredukující konec. Při rozkladu za účelem získávání energie jsou jednotlivé glukózy odštěpovány od neredukujících konců.
Důkazy redukujících sacharidů
K důkazu přítomnosti redukujících sacharidů se používá několik látek. Dvě z nich spočívají ve využití měďnatých kationtů: Benedictovo činidlo (Cu2+ ve vodném roztoku citronanu sodného) a Fehlingovo činidlo (Cu2+ ve vodném roztoku vinanu draselno-sodného), které se smíchají s roztokem hydroxidu sodného.[4] Redukující sacharid způsobí redukci měďnatých kationtů na měďné, čímž vznikne sraženina oxidu měďného. Citronan či vinan zabraňují reakci Cu2+ s hydroxidovými anionty, kdy by se vytvořil nerozpustný hydroxid měďnatý a reakce by neproběhla.
Další možností je Tollensovo činidlo, připravované z dusičnanu stříbrného rozpouštěním ve vodném roztoku amoniaku.[4] Při jeho přidání do roztoku aldehydu se vysráží stříbrné „zrcátko“
Kyselina 3,5-dinitrosalicylová umožňuje i kvantitativní stanovení. S redukujícím sacharidem reaguje za vzniku kyseliny 3-amino-5-nitrosalicylové, jejíž koncentraci, závislou na původní koncentraci redukujícího sacharidu, lze zjistit pomocí spektrofotometrie.[5]
Význam v lékařství
Fehlingovo činidlo se dlouhou dobu používalo k diagnostice diabetu, při němž prudce roste glykemie (obsah glukózy v krvi) z důvodu nedostatečné produkce inzulinu (diabetes 1. typu) nebo neschopnosti buněk na něj reagovat (diabetes 2. typu) Měřením množství oxidačního činidla redukovaného glukózou lze stanovit obsah glukózy v krvi nebo moči, což umožňuje určit správnou dávku inzulinu, čímž se glykemie dostane na normální hodnoty.
Význam v potravinářské chemii
Maillardova reakce
Karbonylové skupiny redukujících sacharidů reagují s aminoskupinami aminokyselin za vzniku různých, zdraví prospěšných i škodlivých, látek. Tento soubor reakcí, jež snižují celkovou kvalitu potravin[6], se nazývá Maillardova reakce. Jedním z jejích produktů je akrylamid, neurotoxin a možný karcinogen, jenž vzniká z asparaginu a redukujících sacharidů při zahřátí na vysoké teploty (nad 120 °C).
Kvalita potravin
Obsah redukujících sacharidů ve víně, džusech a cukrové třtině je ukazatelem kvality těchto produktů a sledováním úrovně redukujících sacharidů během výroby potravin se dosahuje jejich zkvalitnění. Nejčastěji se používá Lane-Eynonova metoda, která spočívá v titraci redukujících sacharidů s Cu2+ z Fehlingova činidla za přítomnosti methylenové modře, což je běžný redoxní indikátor. Metoda je ovšem nepřesná, nákladná a citlivá na nečistoty.
Reference
- ↑ PRATT, Charlotte W.; CORNELY, Kathleen. Essential Biochemistry. Third. vyd. [s.l.]: Wiley, 2013. ISBN 978-1118083505. S. 626. (anglicky)
- ↑ a b DAVIDSON, Eugene A. Encyclopædia Britannica. Carbohydrate. [s.l.]: [s.n.], 2015. (anglicky)
- ↑ KLEIN, David. Organic Chemistry. First. vyd. [s.l.]: John Wiley & Sons, 2012. ISBN 978-0471756149. S. 1162-1165. (anglicky)
- ↑ a b KLEIN, David. Organic Chemistry. First. vyd. [s.l.]: John Wiley & Sons, 2012. ISBN 978-0471756149. S. 1159. (anglicky)
- ↑ LEUNG, David W. M.; THORPE, Trevor A. Interference by edta and calcium ions of the 3,5-dinitrosalicylate reducing sugar assay. Phytochemistry. Pergamon Press, April 1984, s. 2949-2950. ISSN 0031-9422. DOI 10.1016/0031-9422(84)83048-4. (anglicky)
- ↑ JIANG, Zhanmei; WANG, Lizhe; WU, Wei; WANG, Yu. Biological activities and physicochemical properties of Maillard reaction products in sugar–bovine casein peptide model systems. Food Chemistry. Elsevier, June 2013, s. 3837-3845. ISSN 0308-8146. DOI 10.1016/j.foodchem.2013.06.041. (anglicky)
Média použitá na této stránce
Equilibrium between the cyclic and open form of Maltose