Relativnost současnosti
Relativnost současnosti je fyzikální koncept, který tvrdí, že vzdálená oddělená současnost není absolutní, ale závisí na vztažné soustavě pozorovatele.
Vysvětlení
Speciální teorie relativity říká, že není možné určit v absolutním smyslu, že se dvě události staly ve stejnou dobu, jsou-li tyto odděleny v prostoru. Například dvě autohavárie v Londýně a v New Yorku, které se z pohledu pozorovatele na povrchu Země staly ve shodném čase se staly v mírně odlišném čase pro pozorovatele v letadle letícím mezi Londýnem a New Yorkem. Otázka, zda jsou tyto události současné, je relativní. V soustavě stacionární vzhledem k povrchu Země mohou události proběhnout současně, ale v dalších vztažných soustavách (v pohybu vzhledem k událostem) se může stát, že nejdříve dojde k havárii v Londýně a v jiné soustavě zase v New Yorku. Nicméně pokud mohou být dvě události kauzálně spojeny (to znamená že doba mezi událostí A a B je větší než vzdálenost dělená rychlostí světla), pořadí událostí zůstává zachováno ve všech vztažných soustavách.
Představíme-li si jeden referenční rámec přiřazený přesně ve stejnou dobu dvěma událostem, které jsou v různých bodech prostoru, referenční rámec, který se k vzhledem k první události pohybuje obecně přiřadí dvěma událostem různé časy. To je znázorněno na paradoxu žebříku, což je myšlenkový experiment s žebříkem, který se pohybuje vodorovně vysokou rychlostí garáží. V klidu je žebřík příliš dlouhý, takže se do garáže nevejde. Když se však pohybuje vysokou rychlostí, podléhá Lorentzově kontrakci délky, takže je v určitém okamžiku celý v garáži. Z hlediska pozorovatele, který se pohybuje s žebříkem, je to ale garáž, která se pohybuje vysokou rychlostí, a tedy zkracuje, takže se do ní žebřík rozhodně vejít nemůže. Paradox vzniká tím, že si představujeme současnost jako absolutní.
Matematicky relativnost současnosti poprvé formuloval Hendrik Antoon Lorentz v roce 1892. Fyzikálně byl jev interpretován v roce 1900 jako výsledek synchronizace pomocí světelných signálů Henri Poincarém. Nicméně jako Lorentz tak Poincaré nadále pracovali s éterem jako preferovaným ale nezjistitelným referenčním rámcem a nadále rozlišovali mezi opravdovým časem (v éteru) a vlastními časy pozorovatelů. Klasický éter opustil až Albert Einstein v roce 1905 a zdůraznil význam relativnosti současnosti pro naše chápání prostoru a času. Usoudil, že absolutnost současnosti selhává ze dvou důvodů:
- Obecný princip relativity – fyzikální zákony jsou stejné ve všech inerciálních vztažných soustavách
- Rychlost světla ve vakuu je ve všech směrech stejná, nezávisle na relativním pohybu zdroje
Myšlenkový experiment s vlakem
K pochopení myšlenky relativnosti současnosti může pomoci prostý myšlenkový pokus s pozorovatelem uvnitř rychle se pohybujícího vlaku a s druhým pozorovatelem stojícím na nástupišti, kterého vlak míjí.
Záblesk světla vyjde ze středu vlakového vozu, právě když se oba pozorovatelé míjejí. Pozorovatel ve středu vlakového vozu vidí přední a zadní část vozu ve stejných vzdálenostech od zdroje světla, takže podle něho dosáhne světlo přední i zadní konec vozu ve stejnou dobu.
Naproti tomu pozorovatel na nástupišti vidí, jak se zadní část vozu pohybuje dopředu a tedy se blíží k bodu, z něhož vyšel světelný signál, kdežto přední část vozu se pohybuje směrem od zdroje signálu. Protože rychlost světla je stejná ve všech směrech pro všechny pozorovatele a konečná, světlo mířící k zadní části vozu musí překonat menší vzdálenost než světlo mířící k přední části vozu. Z hlediska pozorovatele na nástupišti tedy dosáhnou světelné záblesky obou konců vozu v různých časech.
Lorentzova transformace
Relativnost současnosti lze vypočítat z Lorentzových transformací, které dávají do vztahu souřadnice používané jedním pozorovatelem a souřadnice používané jiným pozorovatelem v rovnoměrném relativním pohybu vzhledem k prvnímu.
Předpokládejme, že první pozorovatel používá souřadnic značené t, x, y, a z, zatímco druhá pozorovatel používá souřadnic značené t', x', y', a z'. Nyní předpokládejme, že první pozorovatel vidí druhého pohybujícího se ve směru osy x při rychlosti v. Dále předpokládejme, že souřadnicové osy pozorovatelů jsou rovnoběžné a mají stejný původ. Potom nám Lorentzovy transformace ukazují, že jsou souřadnice spojeny pomocí rovnice:
kde c je rychlost světla. Pokud se stanou dvě události současně v rámci prvního pozorovatele budou mít stejné hodnoty t-souřadnic. Nicméně pokud mají různé hodnoty souřadnice x )různé pozice ve směru osy x, budou mít různé hodnoty souřadnice t', v tomto rámci se stanou v různých časech. Podmínka odpovídající za selhání absolutní současnosti je v x/c2.
Rovnice t' = konstanta definující linii současnosti v (x' ,t' ) souřadnicovém systému druhého, pohybujícího se pozorovatele. Stejně jako rovnice t=konstanta definuje linii současnosti pro prvního stacionárního pozorovatele v (x,t) souřadnicovém systému. Z výše uvedených rovnic plyne, že t' je konstantní pouze pokud t – v x/c2 = konstanta. Proto se množina bodů, které tvoří t konstantu liší od množiny bodů, které tvoří t' konstantu. To znamená, že množina událostí, které jsou považovány za současné, závisí na referenčním rámci užitém ke srovnání.
Historie
V letech 1892 a 1895 použil Hendrik Lorentz matematickou metodu zvanou místní čas t' = t – v x/c2 pro vysvětlení negativních výsledků experimentů s unášením éteru. Lorentz ale nenašel fyzikální vysvětlení tohoto jevu. S tím přišel Henri Poincaré v roce 1898, když Poincaré předpokládal stálost rychlosti světla pro všechny pozorovatele a který zdůraznil konvenční povahu současnosti. Jeho práce ale neobsahovala žádnou diskuzi Lorentzovy práce nebo případného rozdílu v definici současnosti pro pozorovatele v různých stavech pohybu. To bylo provedeno roku 1900, když byl odvozen místní čas za předpokladu neměnnosti rychlosti světla v éteru. Vzhledem k platnosti principu relativního pohybu, pohybující se pozorovatelé v éteru také předpokládají, že jsou v klidu, a že rychlost světla je konstantní ve všech směrech. Z tohoto důvodu, v případě že dojde k synchronizaci hodin pomocí světelných signálů, je třeba brát v úvahu pouze dobu průchodu pro signály, ale ne jejich pohyb ve vztahu k éteru. Takže pohyblivé hodiny nejsou synchronní a nesignalizují opravdový čas. Poincaré spočítal, že tato chyba synchronizace odpovídá místnímu Lorentzovu času. V roce 1904 Poincaré zdůraznil spojení mezi principem relativity, místním časem a konstantností rychlosti světla. Nicméně úvahy v tomto dokumentu byly předložena jako domněnky.
Albert Einstein použít podobnou metodu v roce 1905 a odvodil dobu transformace pro všechny pořadí v/c, to znamená úplné Lorentzovy transformace. Poincaré získal úplné transformace dříve také v roce 1905, ale v publikaci v daném roce nezmínil svůj postup synchronizace. Toto odvození se zcela opíralo o princip relativity a konstantnost rychlosti světla, takže pro elektrodynamiku pohybujících se těles se stal éter nadbytečným. To znamená, že rozdělení na pravé a místní časy mizí. Všechny časy jsou stejně platné, a proto je relativita délky a času přirozeným důsledkem.
V roce 1908 Hermann Minkowski představil koncept světočáry částice ve svém modelu vesmíru zvaném Minkowského prostor. Matematický model prostoročasu je afinní geometrie vybavena o kvadratické formy, které měří intervaly mezi událostmi. Pokud jsou události spojeny světlem, interval je nula. V Minkowského systému, je současná nadrovina určena kvadratickou formou v každé události podél světočáry. Tato současná nadrovina závisí na rychlosti částice, a proto relativní k rychlosti.
Reference
V tomto článku byl použit překlad textu z článku Relativity of simultaneity na anglické Wikipedii.
Média použitá na této stránce
Autor: User:Acdx, Licence: CC BY-SA 4.0
Animation illustrating relativity of simultaneity. The three events (A, B, C) are simultaneous from the reference frame of an observer moving at v = 0. From the reference frame of an observer moving at v = 0.3c, the events appear to occur in the order C, B, A. From the reference frame of an observer moving at v = -0.5c, the events appear to occur in the order A, B, C. The white line represents a plane of simultaneity being moved from the past of the observer to the future of the observer, highlighting events residing on it. The gray area is the light cone of the observer.