Sinus

Graf funkce sinus – sinusoida
Sinus v pravoúhlém trojúhelníku

Sinus je goniometrická funkce nějakého úhlu. Zapisuje se jako sin θ, kde θ je velikost úhlu. Pro ostré úhly je definována v pravoúhlém trojúhelníku jako poměr protilehlé odvěsny a přepony (nejdelší strany). Definici lze konzistentně rozšířit jak na všechna reálná čísla, tak i do oboru komplexních čísel.

Grafem funkce sinus v reálném oboru je sinusoida.

Sinus na jednotkové kružnici

Sinus α na jednotkové kružnici
Animace zobrazuje funkci sinus (červeně) vykreslenou ze souřadnice y (červený bod) a k tomu náležící bod na jednotkové kružnici (zelený bod) pod úhlem θ.

Sinus se jednoduše definuje na jednotkové kružnici (kružnici se středem v počátku a s poloměrem 1): Je-li α úhel, který svírá rameno s kladnou poloosou x (orientovaný od kladné poloosy x proti směru hodinových ručiček), je sin α roven y-ové souřadnici průsečíku této kružnice s koncovým ramenem úhlu α, jinak řečeno, rovná se délce kolmice spuštěné z tohoto bodu na osu x. Délce úsečky z počátku k patě této kolmice, přesněji (s ohledem na znaménko) x-ové souřadnici průsečíku jednotkové kružnice s koncovým ramenem úhlu α, je pak roven cos α. Poloměr, kolmice a tato úsečka tvoří pravoúhlý trojúhelník, pro nějž platí Pythagorova věta, takže také platí:

.

Na jednotkové kružnici je také vidět, že sinus je v prvním a druhém kvadrantu nezáporný (≥ 0), kdežto ve třetím a čtvrtém nekladný (≤ 0). V prvním a čtvrtém kvadrantu je rostoucí, ve druhém a třetím klesající.

Protože zřejmě platí, že

(resp. )),

kde je libovolné celé číslo, lze funkci sinus rozšířit i na záporné úhly a konzistentně definovat jako funkci na celé množině reálných čísel. Sinusoida pak zhruba (při nekonečně dlouhé ojnici) popisuje například pohyb pístu ve válci spalovacího motoru.

Sinus v reálném oboru

Reálná funkce reálné proměnné má následující vlastnosti (kde je libovolné celé číslo):

  • Definiční obor: (reálná čísla)
  • Obor hodnot:
  • Rostoucí: v každém intervalu
  • Klesající: v každém intervalu
  • Maximum je (v bodech )
  • Minimum je (v bodech )
  • Derivace:
  • Primitivní funkce:
  • Taylorova řada:
  • Inverzní funkce (na intervalu a oborem hodnot ): arkus sinus (arcsin)
  • Sinus doplňkového úhlu:
  • Sinus dvojnásobného argumentu:
  • Sinus polovičního argumentu:
  • délka sinusoidy (na intervalu periody): Navinutím grafu funkce na válec o poloměru vznikne elipsa o poloosách , . Díky této transformaci lze k výpočtu použít četné nástroje pro obvod elipsy.
  • funkce sinus:

Sinus a kvadranty

Čtyři kvadranty kartézské soustavy souřadnic. Po jednotkové kružnici (obrázek vlevo) se pohybujeme proti směru hodinových ručiček a začínáme napravo (přechod žluté a hnědé barvy).

Pohybujeme se v kartézské soustavě souřadnic se čtyřmi kvadranty. Níže uvedená tabulka zobrazuje několik klíčových vlastností sinusové funkce dle konkrétního kvadrantu. Pro argumenty mimo tabulku lze vypočítat odpovídající informace pomocí periodicity funkce sinus.

KvadrantyStupněRadiányHodnotaHodnota sinu +/−
I.0° < x < 90°0 < x < π/20 < sin(x) < 1+
II.90° < x < 180°π/2 < x < π0 < sin(x) < 1+
III.180° < x < 270°π < x < 3π/2−1 < sin(x) < 0
IV.270° < x < 360°3π/2 < x < 2π−1 < sin(x) < 0

Následující tabulka uvádí základní hodnoty na hranicích kvadrantů:

StupněRadiánysin (x)
00
90°π/21
180°π0
270°3π/2−1
Úhly jsou udávány ve stupních a radiánech spolu s odpovídajícím průsečíkem na jednotkové kružnici (cos (θ), sin (θ)).

Hodnoty sinus na jednotkové kružnici

Tabulka pro orientaci v jednotkové kružnici ve stupních a radiánech:

x (úhel)
StupněRadiányOtočení v kružnici
00
180°π1/2
15°π/121/24
165°11π/1211/24
30°π/61/12
150°5π/65/12
45°π/41/8
135°3π/43/8
60°π/31/6
120°2π/31/3
75°5π/125/24
105°7π/127/24
90°π/21/4

Tabulka hodnot po 90° v jednotkové kružnici:

x ve stupních90°180°270°360°
x v radiánech0π/2π3π/2
x po 1/4 kružnice01/41/23/41
hodnota sin x010−10

Výpočty hodnot

Sinus, stejně jako ostatní goniometrické funkce, patří mezi tzv. transcendentální funkce, jejichž hodnoty nelze přímo vypočítat pomocí elementárních operací. Pro výpočty s goniometrickými funkcemi se používají počítače a vědecké kalkulátory, takže jejich hodnoty většinou není třeba počítat. Pro ruční výpočet se používaly tabulky, kde byly tyto hodnoty už vypočteny pro určité hodnoty úhlů, a pro mezilehlé hodnoty se používala interpolace. Pro výpočty například při tvorbě takových tabulek se používají nekonečné řady. V počítačích a kalkulátorech se hodnoty goniometrických funkcí obvykle aproximují pomocí snáze vypočítatelných hodnot obvykle Čebyševových polynomů nebo nekonečných řad (Taylorova řada)

Hodnoty goniometrických funkcí lze však přesně určit pro všechny násobky 60° a 45°, a to následujícím způsobem:

Mějme rovnoramenný pravoúhlý trojúhelník s délkami odvěsen a=b=1; úhly při přeponě jsou stejné a tedy rovné (45°). Pak podle Pythagorovy věty:

a tedy ovšem

Goniometrické funkce úhlů radiánů (60°) a radiánů (30°) se určí pomocí rovnostranného trojúhelníka se stranami délky 1. Všechny jeho úhly jsou rovny radiánů (60°). Když ho rozdělíme na poloviny, získáme pravoúhlý trojúhelník s úhly o velikostech a . Jeho kratší odvěsna má délku , delší a přepona délku 1. Pak tedy:

Sinus v komplexním oboru

Funkce sinus je v komplexních číslech definována součtem řady

která konverguje na celé komplexní rovině. Pro každá komplexní čísla , a platí:

Tyto vzorce plynou přímo z příslušných definičních mocninných řad daných funkcí. Sinus je na celé komplexní rovině jednoznačná holomorfní funkce.

Odkazy

Související články

Externí odkazy

Média použitá na této stránce

Sine triangle circle.svg
A right triangle drawn within a unit circle, with a central angle α (in this example 30 °), a hypotenuse of length 1, and the side opposite the central angle of length sin α.
Circle cos sin.gif
We have the unit circle (with radius = 1) in green, placed at the origin at the bottom right.

In the middle of this circle, in yellow, is represented the angle theta (θ). This angle is the amount of counter-clockwise rotation around the circle starting from the right, on the x-axis, as illustrated. An exact copy of this little angle is shown at the top right, as a visual illustration of the definition of θ.

At this angle, and starting at the origin, a (faint) green line is traced outwards, radially. This line intersects the unit circle at a single point, which is the green point spinning around at a constant rate as the angle θ changes, also at a constant rate.

The vertical position of this point is projected straight (along the faint red line) onto the graph on the left of the circle. This results in the red point. The y-coordinate of this red point (the same as the y-coordinate of the green point) is the value of the sine function evaluated at the angle θ, that is:

y coordinate of green point = sin θ

As the angle θ changes, the red point moves up and down, tracing the red graph. This is the graph for the sine function. The faint vertical lines seen passing to the left are marking every quadrant along the circle, that is, at every angle of 90° or π/2 radians. Notice how the sine curve goes from 1, to zero, to -1, then back to zero, at exactly these lines. This is reflecting the fact sin(0) = 0, sin(π/2) =1, sin(π) = 0 and sin(3π/ 2) -1

A similar process is done with the x-coordinate of the green point. However, since the x-coordinate is tilted from the usual convention to plot graphs (where y = f(x), with y vertical and x horizontal), an “untilt” operation was performed in order to repeat the process again in the same orientation, instead of vertically. This was represented by a “bend”, seen on the top right.

Again, the green point is projected upwards (along the faint blue line) and this “bent” projection ends up in the top graph’s rightmost edge, at the blue point. The y-coordinate of this blue point (which, due to the “bend” in the projection, is the same as the x-coordinate of the green point) is the value of the cosine function evaluated at the angle θ, that is:

x coordinate of green point = cos θ
The blue curve traced by this point, as it moves up and down with changing θ, is the the graph of the cosine function. Notice again how it behaves at it crosses every quadrant, reflecting the fact cos(0) = 1, cos(π/2) = 0, cos(π) = -1 and cos(3π/2) = 0.
Trig-unit-hyp.svg
Triangle showing Sin and Cos.
Sine quads 01 Pengo.svg
Autor: Pengo, Licence: CC BY-SA 3.0
Quadrants for sin(x)
Unit circle angles.svg
Jednotková kružnice.