Skleníkový efekt

Krátkovlnné záření ze slunce dopadající na zemský povrch a atmosféru. Dlouhovlnná délka záření je emitována z povrchu a téměř zcela absorbována do atmosféry. V tepelné rovnováze je absorbovaná energie z atmosféry stejná jako ta vydávaná do vesmíru. Čísla ukazují výkon záření ve wattech na metr čtvereční v období let 2000-2005.

Skleníkový efekt, také zvaný skleníkový jev je proces, kterým záření atmosféry planety ohřívá povrch planety na teplotu vyšší, než by měla bez atmosféry.[1][2]

Pokud atmosféra planety obsahuje zářivě aktivní plyny (tj. skleníkové plyny), budou vyzařovat energii ve všech směrech. Část tohoto záření míří směrem k povrchu a otepluje ho.[3] Intenzita záření - tedy síla skleníkového efektu - závisí na teplotě atmosféry a na množství skleníkových plynů, které atmosféra obsahuje.

Přirozený skleníkový efekt Země je rozhodující pro zachování života. Lidská činnost, především spalování fosilních paliv a kácení lesů, zesilují skleníkový efekt a způsobují globální oteplování.[4]

Pojem "skleníkový efekt" vznikl z chybné analogie s účinkem slunečního světla, které prochází sklem a ohřívá skleník. Způsob, jakým skleník zachovává teplo, je však zásadně odlišný, protože skleník pracuje většinou snížením proudu vzduchu tak, aby se zachoval teplý vzduch uvnitř.[2][5][6]

Historie

Existenci skleníkového efektu v roce 1824 předpověděl francouzský fyzik a matematik Joseph Fourier. Argument a důkazy byly dále v letech 1827 a 1838 podpořeny francouzským fyzikem Claudem Pouilletem a odůvodněny experimentálními pozorováními irského fyzika Johna Tyndalla v roce 1859, který změřil radiační vlastnosti určitých skleníkových plynů.[7] Účinek byl plně vyčíslen v roce 1896 švédským vědcem Svantem Arrheniusem, který provedl první kvantitativní odhad globálního oteplování následkem hypotetického zdvojnásobení atmosférického oxidu uhličitého.[8] Žádný z těchto vědců však nepoužil termín „skleníkový efekt“; ten byl v tomto významu poprvé použit švédským meteorologem Nilsem Gustafem Ekholmem v 1901.[9][10]

Mechanismus

Země přijímá energii ze Slunce v podobě ultrafialového, viditelného a blízkého infračerveného záření. Asi 26 % přicházející sluneční energie se atmosférou a mraky odráží zpátky do vesmíru a 19 % energie atmosféra a mraky absorbují. Většina zbývající energie je absorbována na povrchu Země. Vzhledem k tomu, že povrch Země je chladnější než Slunce, vyzařuje na vlnových délkách, které jsou mnohem delší než vlnové délky, které byly absorbovány. Většina tohoto tepelného záření (od Země) je absorbována atmosférou a ohřívá ji. Atmosféra také získává teplo na ohřátí vzduchu a latentní teplo proudící z povrchu. Atmosféra vyzařuje energii jak nahoru, tak dolů; část vyzařovaná dolů je absorbována povrchem Země. To vede k vyšší rovnovážné teplotě, než kdyby atmosféru neměla.

Spektrum slunečního záření pro přímé světlo na horní hranici zemské atmosféry i na hladině moře

Ideální tepelně vodivé černé těleso ve stejné vzdálenosti od Slunce jako Země by mělo teplotu kolem 5,3 °C. Vzhledem k tomu, že Země odráží přibližně 30 %[11][12] přicházejícího slunečního světla, tak by tato efektivní teplota ideální planety (teplota černého těla, která by vyzařovala stejné množství záření) byla asi -18 °C.[13][14] Povrchová teplota této hypotetické planety je o 33 °C nižší než aktuální teplota povrchu Země, která je přibližně 14 °C.[15]

Základní mechanismus může být kvalifikován mnoha způsoby, z nichž žádný neovlivňuje základní proces. Atmosféra v blízkosti povrchu je převážně neprůhledná pro tepelné záření (s důležitými výjimkami pro „průhledné“ pásy) a většina tepelných ztrát z povrchu je vlastním teplem a skupenským přenosem tepla. Radiační energetické ztráty jsou v atmosféře stále důležitější, především kvůli klesající koncentraci vodní páry, která je důležitým skleníkovým plynem. Je mnohem realističtější myslet na to, že skleníkový efekt se vztahuje na „povrch“ ve střední části troposféry, která je účinně spojena s povrchem teplotním gradientem. Jednoduchý obraz také předpokládá ustálený stav, ale v reálném světě existují odchylky v důsledku denního cyklu, stejně jako sezónního cyklu a povětrnostních poruch. Solární ohřev se uplatňuje pouze během dne. Během noci se atmosféra trochu ochlazuje, ale ne velice, protože její emisivita je nízká. Denní kolísání teploty se snižuje s výškou v atmosféře.

V oblasti, kde jsou důležité radiační účinky, se popis, který je daný idealizovaným skleníkovým modelem, stává realistickým. Zemský povrch, ohřátý na teplotu okolo 255 K (-18 ℃), vyzařuje dlouhovlnné, infračervené teplo v rozmezí 4-100 μm.[16] Při těchto vlnových délkách jsou skleníkové plyny, které byly převážně průhledné pro příchozí sluneční záření, více absorpční.[16] Každá vrstva atmosféry se skleníkovými plyny pohlcuje část tepla vyzařované nahoru ze spodních vrstev. Probíhá opakování ve všech směrech, jak nahoru, tak dolů; v rovnováze (podle definice) je to stejné množství, jaké se absorbovalo. To má za následek větší teplotu dole. Zvýšení koncentrace plynů zvyšuje množství absorpce a opětovné záření, čímž dále ohřívá vrstvy a nakonec i povrch pod nimi.[14]

Skleníkové plyny - včetně většiny dvoumolekulových atomů plynů se dvěma různými atomy (jako je oxid uhelnatý, CO) a všechny plyny se třemi nebo více atomy - jsou schopny absorbovat a vyzařovat infračervené záření. Ačkoli více než 99 % suché atmosféry je pro infračervené záření průhledné (protože hlavní složky - N2, O2 a argon - nejsou schopny přímo absorbovat nebo vyzařovat infračervené záření), mezimolekulové srážky způsobují, že energie pohlcovaná a vyzařovaná skleníkovými plyny je sdílena s ostatními plyny, které nejsou aktivní v infračervené oblasti.

V páté hodnotící zprávě Mezivládního panelu pro změnu klimatu se uvádí, že „se zdá, že je velmi pravděpodobné, že lidskou činností nelze vyvolat „nekontrolovatelný skleníkový jev“ - analogický s Venuší.“[17] K vyvolání změn obdobných těm na Venuší by muselo na Zemi dojít k dlouhodobému tlaku, který pravděpodobně nenastane, pokud intenzita záření Slunce nenaroste o desítky procent, což bude trvat několik miliard let.[18]

Skleníkové plyny

Podrobnější informace naleznete v článku Skleníkové plyny.

Podle jejich procentního podílu na skleníkovém efektu na Zemi jsou čtyři hlavní plyny:[19][20]

Atmosférické plyny absorbují pouze některé vlnové délky energie, ale jsou průhledné ostatním. Absorpční vzory vodní páry (modré vrcholy) a oxidu uhličitého (růžové špičky) se překrývají na některých vlnových délkách. Oxid uhličitý není jako skleníkový plyn tak silný jako vodní pára, ale absorbuje energii na delších vlnových délkách (12–15 mikrometrů), které vodní pára nevede, částečně uzavře "okno", kterým by teplo vyzařované povrchem normálně uniklo do prostoru. (Ilustrace NASA, Robert Rohde)[21]

Každému plynu nelze přiřadit přesné procento, protože absorpční a emisní pásy plynů se překrývají (proto jsou výše uvedeny rozsahy). Mraky také absorbují a vyzařují infračervené záření a tím ovlivňují radiační vlastnosti atmosféry.[20]

Role ve změně klimatu

Podrobnější informace naleznete v článku Globální oteplování.
Keelingova křivka křivka koncentrací CO2 v atmosféře naměřená na observatoři Mauna Loa

Zesílení skleníkového efektu prostřednictvím lidské činnosti je známo jako zvýšený (nebo antropogenní) skleníkový efekt.[22] Tento nárůst radiačního působení z lidské činnosti je důsledkem zejména zvýšení úrovně oxidu uhličitého v atmosféře.[23] Podle nejnovější hodnotící zprávy Mezivládního panelu pro změnu klimatu "atmosférické koncentrace oxidu uhličitého, metanu a oxidu dusného jsou za posledních 800 000 letech bezprecedentní. Jejich účinky společně s jinými antropogenními silami byly zjištěny v celém klimatickém systému a je velmi pravděpodobné, že byly dominantní příčinou pozorovaného oteplování od poloviny 20. století."[24]

CO2 vzniká spalováním fosilních paliv a dalšími činnostmi, jako je výroba cementu a odlesňování tropů.[25] Měření CO2 na observatoři Mauna Loa na Havaji ukazuje, že koncentrace se od roku 1960 zvýšily z přibližně hodnoty 313 ppm [26] na přibližně 389 ppm v roce 2010. Dne 9. května 2013 dosáhly koncentrace milníku 400 ppm.[27] Současné zjištěné množství CO2 překračuje maximální hodnoty geologických záznamů (~ 300 ppm) z údajů ledových vrtných jader (ledové vývrty).[28] Účinek oxidu uhličitého vzniklého spalováním na globální klima, zvláštní případ skleníkového efektu, poprvé popsaný v roce 1896 Svantem Arrheniusem, se také nazývá Callendarův účinek.

Údaje z ledových vrtných jader z uplynulých 800 000 let[29] ukazují, že koncentrace oxidu uhličitého se pohybovala od hodnot od 180 ppm do před industriální úrovně 270 ppm.[30] Paleoklimatologové považují změny v koncentraci oxidu uhličitého za zásadní faktor ovlivňující změny klimatu v tomto časovém měřítku.[31][32]

Vědecké potvrzení role skleníkových plynů

V rámci vědeckých modelů fungování klimatu byly definovány následující následky zvyšování koncentrací skleníkových plynů, především CO2:

  • ztenčování vrchních vrstev atmosféry,
  • pokles teploty horních vrstev atmosféry,
  • rychlejší vzestup nočních teplot proti denním,
  • rychlejší vzestup zimních teplot proti letním,
  • nižší vyzařování tepla do vesmíru,
  • snižování obsahu kyslíku v ovzduší,
  • zvyšování koncentrace CO2 v ovzduší,
  • vyšší koncentrace CO2 ze spalovacích procesů ve stromech,
  • větší množství infračerveného záření, které se navrací na zemi,
  • zvyšování teploty oceánů,
  • větší koncentrace CO2 ze spalovacích procesů v oceánech a korálech.

Všechny vyjmenované jevy byla potvrzeny měřením těchto jevů při použití mnoha různých vědeckých metod.[33][34][35][36][37][38]

Skutečný skleník

Moderní skleník v anglické vesnici Wisley

"Skleníkový efekt" atmosféry je pojmenován analogicky k skleníkům, které se za slunečního záření stávají teplejšími. Skleník však primárně neohřívá "skleníkový efekt".[39] "Skleníkový efekt" je ve skutečnosti nesprávným názvem, jelikož vytápění v běžném skleníku je způsobeno snížením konvekce[40] zatímco "skleníkový efekt" funguje tak, že brání absorbovanému teplu opouštět strukturu radiačním přenosem.

Skleník je vybudován z jakéhokoliv materiálu, kterým prochází sluneční světlo, obvykle ze skla nebo plastu. Slunce ohřívá zem a obsah uvnitř stejně jako venku, které pak ohřívá vzduch. Venku se teplý vzduch v blízkosti povrchu zvedá a mísí se s chladnějším vzduchem, udržuje teplotu nižší než uvnitř, kde se vzduch nadále zahřívá, protože je omezen na skleník. To lze dokázat otevřením malého okna v blízkosti střechy skleníku: teplota začne výrazně klesat. Experimentálně bylo demonstrováno (Robertem Woodem v roce 1909), že (nevyhřívaný) "skleník" pokrytý horninovou solí, halitem, (který je průhledný vůči infračervenému záření) se ohřívá podobně jako jiný, zakrytý sklem.[6] Takto skleníky fungují především tím, že zabraňují konvektivnímu ochlazování.[5]

Vyhřívané skleníky jsou další záležitostí, které mají vnitřní zdroj tepla, které chce uniknout ven, čemuž se musí zabránit. Dává tedy smysl se pokusit zabránit radiačnímu ochlazení pomocí vhodného zasklení.[41]

Související efekty

Protiskleníkový efekt

Protiskleníkový efekt je mechanismus podobný a symetrický vůči skleníkovému efektu: skleníkový efekt se týká atmosféry, která propouští záření, aniž by dovoloval tepelné vyzařování, které ohřívá povrch těla; anti-skleníkový efekt je kolem atmosféry, která neumožňuje záření a zároveň umožňuje tepelné vyzařování, čímž se snižuje rovnovážná povrchová teplota. Takový účinek se uvádí o saturnově měsíci Titanu.[42]

Skrytý skleníkový efekt

Skrytý skleníkový efekt nastane, pokud kladná zpětná vazba vede k vypařování všech skleníkových plynů do atmosféry.[43] O skrytém skleníkovém efektu, který zahrnuje oxid uhličitý a vodní páru, se již dlouho předpokládá, že nastal na Venuši.[44]

Tělesa jiná než Země

Skleníkový efekt na Venuši je zvláště velký, protože jeho hustá atmosféra se skládá především z oxidu uhličitého.[45] "Venuše v minulosti zažila skleníkový efekt a očekáváme, že na Zemi bude efekt trvat asi 2 miliardy let, jak se zvyšuje sluneční záření."[46]

Titan má protiskleníkový efekt, protože jeho atmosféra pohlcuje sluneční záření, ale je poměrně průhledná pro odchozí infračervené záření.

Trpasličí planeta Pluto je také chladnější, než by se dalo očekávat, protože ho ochlazuje odpařování dusíku.[47]

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Greenhouse effect na anglické Wikipedii.

  1. Glossary from the AR4 Synthesis Report [online]. Intergovernmental Panel on Climate Change / překlad Jiří Došek a Jan Hollan, 2010-01-27. Dostupné online. (anglicky a česky) 
  2. a b A concise description of the greenhouse effect is given in the Intergovernmental Panel on Climate Change Fourth Assessment Report, "What is the Greenhouse Effect?" FAQ 1.3 – AR4 WGI Chapter 1: Historical Overview of Climate Change Science, IPCC Fourth Assessment Report, Chapter 1, page 115: "To balance the absorbed incoming [solar] energy, the Earth must, on average, radiate the same amount of energy back to space. Because the Earth is much colder than the Sun, it radiates at much longer wavelengths, primarily in the infrared part of the spectrum (see Figure 1). Much of this thermal radiation emitted by the land and ocean is absorbed by the atmosphere, including clouds, and reradiated back to Earth. This is called the greenhouse effect."
    Stephen H. Schneider, in Geosphere-biosphere Interactions and Climate, Lennart O. Bengtsson and Claus U. Hammer, eds., Cambridge University Press, 2001, ISBN 0-521-78238-4, pp. 90–91.
    E. Claussen, V. A. Cochran, and D. P. Davis, Climate Change: Science, Strategies, & Solutions, University of Michigan, 2001. p. 373.
    A. Allaby and M. Allaby, A Dictionary of Earth Sciences, Oxford University Press, 1999, ISBN 0-19-280079-5, p. 244.
  3. Vaclav Smil. The Earth's Biosphere: Evolution, Dynamics, and Change. [s.l.]: MIT Press, 2003. Dostupné online. ISBN 978-0-262-69298-4. S. 107. (anglicky) 
  4. IPCC AR4 WG1. Climate Change 2007: The Physical Science Basis. Redakce Solomon, S.. [s.l.]: Cambridge University Press, 2007. (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change). Dostupné online. ISBN 978-0-521-88009-1. (anglicky)  (pb: 978-0-521-70596-7)
  5. a b Schroeder, Daniel V. An introduction to thermal physics. San Francisco (Kalifornie, USA): Addison-Wesley, 2000. ISBN 0-321-27779-1. S. 305–7. (anglicky) 
  6. a b Wood, R.W. Note on the Theory of the Greenhouse. Philosophical Magazine. 1909, s. 319–320. Dostupné online. DOI 10.1080/14786440208636602. (anglicky) 
  7. John Tyndall, Heat considered as a Mode of Motion (500 stran, rok 1863, 1873) (anglicky)
  8. Isaac M. Held; BRIAN J. SODEN. Water Vapor Feedback and Global Warming. Annual Review of Energy and the Environment. Annual Reviews, Nov 2000, s. 441–475. Dostupné online. DOI 10.1146/annurev.energy.25.1.441. (anglicky) 
  9. EASTERBROOK, Steve. Who first coined the term "Greenhouse Effect"? [online]. [cit. 2015-11-11]. Dostupné online. (anglicky) 
  10. Ekholm N. On The Variations Of The Climate Of The Geological And Historical Past And Their Causes. Quarterly Journal of the Royal Meteorological Society. 1901, s. 1–62. Dostupné online. DOI 10.1002/qj.49702711702. Bibcode 1901QJRMS..27....1E. (anglicky) 
  11. NASA Earth Fact Sheet [online]. Nssdc.gsfc.nasa.gov [cit. 2010-10-15]. Dostupné online. (anglicky) 
  12. Introduction to Atmospheric Chemistry, by Daniel J. Jacob, Princeton University Press, 1999. Chapter 7, "The Greenhouse Effect" [online]. Acmg.seas.harvard.edu [cit. 2010-10-15]. Dostupné online. (anglicky) 
  13. Solar Radiation and the Earth's Energy Balance [online]. Eesc.columbia.edu [cit. 2010-10-15]. Dostupné online. (anglicky) 
  14. a b Intergovernmental Panel on Climate Change Fourth Assessment Report. Chapter 1: Historical overview of climate change science, strana 97
  15. Prchavá "absolutní teplota povrchu vzduchu", viz GISS diskuse
  16. a b MITCHELL, John F. B. THE "GREENHOUSE" EFFECT AND CLIMATE CHANGE. Reviews of Geophysics. American Geophysical Union, 1989, s. 115–139. Dostupné online [cit. 2008-03-23]. DOI 10.1029/RG027i001p00115. Bibcode 1989RvGeo..27..115M. (anglicky) 
  17. Scoping of the IPCC 5th Assessment Report Cross Cutting Issues. [s.l.]: [s.n.] Dostupné v archivu pořízeném z originálu dne 2009-11-09. (anglicky)  Archivovaná kopie. www.ipcc.ch [online]. [cit. 2019-01-07]. Dostupné v archivu pořízeném z originálu dne 2018-11-09. 
  18. HANSEN, James; SATO, Makiko; RUSSELL, Gary. Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013-10-28, roč. 371, čís. 2001, s. 20120294. Dostupné online [cit. 2019-07-28]. ISSN 1364-503X. DOI 10.1098/rsta.2012.0294. PMID 24043864. (anglicky) 
  19. Water vapour: feedback or forcing? [online]. RealClimate, 6 April 2005 [cit. 2006-05-01]. Dostupné online. (anglicky) 
  20. a b KIEHL, J. T.; KEVIN E. TRENBERTH. Earth's Annual Global Mean Energy Budget. Bulletin of the American Meteorological Society. February 1997, s. 197–208. Dostupné v archivu pořízeném z originálu dne 2006-03-30. ISSN 1520-0477. DOI 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2. Bibcode 1997BAMS...78..197K. (anglicky)  Archivovaná kopie. www.atmo.arizona.edu [online]. [cit. 2017-12-23]. Dostupné v archivu pořízeném z originálu dne 2008-06-24. 
  21. NASA: Climate Forcings and Global Warming [online]. January 14, 2009. Dostupné online. (anglicky) 
  22. Enhanced greenhouse effect — Glossary [online]. Australian Academy of Scihuman impact on the environment, 2006. Dostupné online. (anglicky) 
  23. Enhanced Greenhouse Effect [online]. Ace.mmu.ac.uk [cit. 2010-10-15]. Dostupné v archivu pořízeném z originálu dne 2010-10-24. (anglicky) 
  24. IPCC Fifth Assessment Report IPCC Fifth Assessment Report : Summary for Policymakers (str. 4) (anglicky)
  25. Čtvrtá hodnotící zpráva IPCC, Zpráva pracovní skupiny I "Fyzikální základy "], kapitola 7 (anglicky)
  26. Atmospheric Carbon Dioxide – Mauna Loa [online]. NOAA. Dostupné online. (anglicky) 
  27. Climate Milestone: Earth’s CO2 Level Passes 400 ppm. news.nationalgeographic.com. 2013-05-12. Dostupné online [cit. 2017-12-10]. (anglicky) 
  28. Hansen J. A slippery slope: How much global warming constitutes "dangerous anthropogenic interference"?. Climatic Change. February 2005, s. 269–279. DOI 10.1007/s10584-005-4135-0. (anglicky) 
  29. Deep ice tells long climate story. BBC News. 2006-09-04. Dostupné online [cit. 2010-05-04]. (anglicky) 
  30. Hileman B. Ice Core Record Extended. Chemical & Engineering News. 2005-11-28, s. 7. Dostupné online. (anglicky) 
  31. Bowen, Mark; Thin Ice: Unlocking the Secrets of Climate in the World's Highest Mountains; Owl Books, 2005. (anglicky)
  32. Změna teploty a změna oxidu uhličitého, US National Oceanic and Atmospheric Administration
  33. REVELLE, ROGER; SUESS, HANS E. Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric CO2during the Past Decades. Tellus. 1957-02, roč. 9, čís. 1, s. 18–27. Dostupné online [cit. 2018-10-18]. ISSN 0040-2826. DOI 10.1111/j.2153-3490.1957.tb01849.x. (anglicky) 
  34. LOEB, Norman G.; WIELICKI, Bruce A.; DOELLING, David R. Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget. Journal of Climate. 2009-02, roč. 22, čís. 3, s. 748–766. Dostupné online [cit. 2018-10-18]. ISSN 0894-8755. DOI 10.1175/2008jcli2637.1. (anglicky) 
  35. FELDMAN, D. R.; COLLINS, W. D.; GERO, P. J. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature. 2015-02-25, roč. 519, čís. 7543, s. 339–343. Dostupné online [cit. 2018-10-18]. ISSN 0028-0836. DOI 10.1038/nature14240. (En) 
  36. SANTER, Benjamin D.; PAINTER, Jeffrey F.; BONFILS, Céline. Human and natural influences on the changing thermal structure of the atmosphere. Proceedings of the National Academy of Sciences. 2013-10-22, roč. 110, čís. 43, s. 17235–17240. PMID: 24043789. Dostupné online [cit. 2018-10-18]. ISSN 0027-8424. DOI 10.1073/pnas.1305332110. PMID 24043789. (anglicky) 
  37. LAŠTOVIČKA, J.; AKMAEV, R. A.; BEIG, G. Global Change in the Upper Atmosphere. Science. 2006-11-24, roč. 314, čís. 5803, s. 1253–1254. PMID: 17124313. Dostupné online [cit. 2018-10-18]. ISSN 0036-8075. DOI 10.1126/science.1135134. PMID 17124313. (anglicky) 
  38. The sky IS falling. RealClimate. Dostupné online [cit. 2018-10-18]. (anglicky) 
  39. Brian Shmaefsky. Favorite demonstrations for college science: an NSTA Press journals collection. [s.l.]: NSTA Press, 2004. Dostupné online. ISBN 978-0-87355-242-4. S. 57. (anglicky) 
  40. Oort, Abraham H.; PEIXOTO, JOSÉ PINTO. Physics of climate. New York: American Institute of Physics, 1992. ISBN 0-88318-711-6. (anglicky) 
  41. Energy Effects During Using the Glass With Different Properties in a Heated Greenhouse, Sławomir Kurpaska, Technical Sciences 17 (4), 2014, 351-360 (anglicky)
  42. Titan: Greenhouse and Anti-greenhouse :: Astrobiology Magazine – earth science – evolution distribution Origin of life universe – life beyond :: Astrobiology is study of earth [online]. Astrobio.net [cit. 2010-10-15]. Dostupné online. (anglicky) 
  43. Kasting, James F. (1991). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus.". Planetary Sciences: American and Soviet Research/Proceedings from the U.S.-U.S.S.R. Workshop on Planetary Sciences: 234–245, Commission on Engineering and Technical Systems (CETS). Retrieved on 9 April 2017. 
  44. RASOOL, I.; DE BERGH, C. The Runaway Greenhouse and the Accumulation of CO2 in the Venus Atmosphere. Nature. Jun 1970, s. 1037–1039. Dostupné v archivu pořízeném z originálu dne 2011-10-21. ISSN 0028-0836. DOI 10.1038/2261037a0. PMID 16057644. Bibcode 1970Natur.226.1037R. (anglicky)  Archivovaná kopie. pubs.giss.nasa.gov [online]. [cit. 2017-12-23]. Dostupné v archivu pořízeném z originálu dne 2011-10-21. 
  45. MCKAY, C.; POLLACK, J.; COURTIN, R. The greenhouse and antigreenhouse effects on Titan. Science. 1991, s. 1118–1121. DOI 10.1126/science.11538492. PMID 11538492. (anglicky) 
  46. Goldblatt, Colin a Andrew J. Watson. "RThe Runaway Greenhouse: Implications for Future Climate Change, Geoengineering and Planetary Atmospheres." Philosophical Transactions: Mathematical, Physical and Engineering Sciences, sv. 370, č. 1974, 2012, str. 4197-4216 JSTOR, JSTOR, www.jstor.org/stable/41582871.
  47. Pluto Colder Than Expected [online]. SPACE.com, 2006-01-03 [cit. 2010-10-15]. Dostupné online. (anglicky) 

Související články

Literatura

  • Businger, Joost Alois; Fleagle, Robert Guthrie. An introduction to atmospheric physics. 2. vyd. San Diego: Academic, 1980. (International geophysics series). ISBN 0-12-260355-9. (anglicky) 
  • Henderson-Sellers, Ann; McGuffie, Kendal. A climate modelling primer. 3. vyd. New York: Wiley, 2005. ISBN 0-470-85750-1. (anglicky) 
  • VÍDEN, Ivan. Chemie ovzduší [online]. 1. vyd. Praha: VŠCHT, 2005 [cit. 2017-09-03]. Kapitola 14 Skleníkový efekt, s. 90–97 z 98. Dostupné online. ISBN 80-7080-571-4. 

Externí odkazy

Média použitá na této stránce

Globalni toky energie cs.svg
Sluneční záření dopadající na Zemi (krátkovlnné, polovina z toho je světlo) je většinou pohlceno, část již v ovzduší, vice pak zemským povrchem. Povrch Země ale vyzařuje mnohem více záření, a to dlouhovlnného (s 20× delšími vlnovými délkami, protože má tolikrát nižší absolutní teplotu než Slunce). Malá část tohoto záření pronikne až do vesmíru, valná většina je pohlcena v ovzduší - skleníkovými plyny a mraky. Tytéž složky ovzduší pak také vyzařují, ale méně než povrch Země, protože jsou chladnější. Přesto je úhrn jejich sálání (čili vyzařování vlivem teploty) na zemský povrch větší než oslunění povrchu, navíc je takové dlouhovlnné záření téměř všechno povrchem pohlceno. Velké tepelné toky mezi povrchem a teplým přízemním ovzduším bývaly vyrovnané, vyrovnané bývaly i mnohem nižší tepelné toky mezi vysokou atmosférou a vesmírem. Nyní je vlivem vyšší koncentrace skleníkových plynů tok do vesmíru snížen a bilance toků mezi ovzduším a povrchem o totéž množství zvýšena. Země tak do vesmíru nevrací téměř 1 W/m2. Čísla ukazují globální hustoty toků energie ve wattech na metr čtvereční v období let 2000-2005, tloušťka šipek je symbolizuje také. Jednotlivé toky mají nejistoty ma úrovni několika procent, nejistota jejich udané celkové bilance je dle autorů 0,5 W/m2.
Solar spectrum cs.svg
Autor: Nick84, Licence: CC BY-SA 4.0
Tento obrázek ukazuje spektrum slunečního záření pro přímé světlo jednak na horní hranici zemské atmosféry (reprezentované žlutou oblastí), tak na hladině moře (červená oblast). Slunce produkuje světlo s distribucí podobnou tomu, co by se dalo očekávat od černého tělesa o teplotě 5778 K (5505 °C), což je přibližně povrchová teplota slunce. Jak světlo prochází atmosférou, část je absorbována plyny se specifickými absorpčními pásy. Další světlo je redistribuováno Rayleighovým rozptylem, který je zodpovědný za modrou barvu atmosféry. Tyto křivky jsou založeny na terestrickém referenčním spektru Americké společnosti pro testování a materiály (American Society for Testing and Materials, ASTM), což jsou standardy přijaté fotovoltaickým průmyslem, které zajišťují konzistentní zkušební podmínky a jsou podobné světlu, které lze očekávat v Severní Americe. Zobrazují se oblasti pro ultrafialové, viditelné a infračervené světlo.
CO2 H2O absorption atmospheric gases unique pattern energy wavelengths of energy transparent to others.png
All atmospheric gases have a unique pattern of energy absorption: they absorb some wavelengths of energy but are transparent to others. The absorption patterns of water vapor (blue peaks) and carbon dioxide (pink peaks) overlap in some wavelengths. Carbon dioxide is not as strong a greenhouse gas as water vapor, but it absorbs energy in wavelengths (12-15 micrometers) that water vapor does not, partially closing the “window” through which heat radiated by the surface would normally escape to space. (Illustration adapted from Robert Rohde.)
Mauna Loa CO2 monthly mean concentrationCS.svg
Autor: Delorme, translation by Pavouk from File:Mauna Loa CO2 monthly mean concentration.svg (English) Data from Dr. Pieter Tans, NOAA/ESRL and Dr. Ralph Keeling, Scripps Institution of Oceanography., Licence: CC BY-SA 4.0
Tento obrázek ukazuje historii atmosférických koncentrací oxidu uhličitého, které jsou přímo měřeny na Mauna Loa na Havaji od roku 1958. Tato křivka je známá jako Keelingova křivka a je zásadním důkazem o lidmi způsobeném zvyšování emisí skleníkových plynů, které jsou považovány za příčinou globálního oteplování. I když nejdelší takový záznam existuje na Mauna Loa, tak tato měření byly nezávisle potvrzeny na mnoha dalších místech po celém světě.[1]

Roční fluktuace oxidu uhličitého je způsobena sezónními výkyvy v příjmu oxidu uhličitého suchozemskými rostlinami. Vzhledem k tomu, že většina lesů je soustředěna na severní polokouli, je více oxidu uhličitého odstraněno z atmosféry v průběhu léta na severní polokouli, než v průběhu léta na jižní polokouli. Tento každoroční cyklus je znázorněn na vloženém obrázku tím, že že bere průměrná koncentrace pro každý měsíc za všechny měřené roky.

Červená křivka znázorňuje průměrné měsíční koncentrace a modrá křivka je vyhlazený trend.

Data oxidu uhličitého se měří jako molární podíl v suchém vzduchu. Tento soubor dat představuje nejdelší záznam přímého měření CO2 v atmosféře (do roku 2018).
RHSGlasshouse.JPG
Autor: Mark Boyce, Licence: CC-BY-SA-3.0
The Glasshouse, RHS Wisley Garden, Surrey, UK