Teserakt

Teserakt
8nadstěn
3D projekce teseraktu
3D projekce teseraktu
TypPravidelný polychoron
Nadstěn8 (4.4.4)
Stěn24 {4}
Hran32
Vrcholů16
Uspořádání vrcholů4 (4.4.4)
(tetraedr)
Schläfliho symbol{4,3,3}
Grupa symetriegrupa [3,3,4]
Duální těleso16nadstěn
Vlastnostikonvexní
3D projekce teseraktu

Teserakt či oktachoron je v geometrii čtyřrozměrnou analogií krychle, jde tedy o speciální variantu nadkrychle pro d=4. Odborněji by mohl být teserakt definován jako pravidelný konvexní čtyřúhelník s osmi krychlovými nadstěnami. Předpokládá se, že slovo teserakt vymyslel Charles Howard Hinton.

Geometrie

Standardní teserakt je v Euklidovském prostoru dán jako konvexní obal bodů (±1, ±1, ±1, ±1).

Objem a obsah teseraktu

Následující vzorce udávají, jaký je objem teseraktu, a jeho k-rozměrné povrchy (což je vždy obsah k-rozměrné stěny krát počet těchto stěn) v závislosti na hraně a.[1]

Poloměr vepsané koule je

a poloměr koule opsané je

      

Vícerozměrná geometrická tělesa
d=2trojúhelníkčtverecšestiúhelníkpětiúhelník
d=3čtyřstěnkrychle, oktaedrkrychloktaedr, kosočtverečný dvanáctistěndvanáctistěn, dvacetistěn
d=45nadstěnteserakt, 16nadstěn24nadstěn120nadstěn,600nadstěn
d=55simplexpenterakt, 5ortoplex
d=66simplexhexerakt, 6ortoplex
d=77simplexhepterakt, 7ortoplex
d=88simplexokterakt, 8ortoplex
d=99simplexennerakt, 9ortoplex
d=1010simplexdekerakt, 10ortoplex
d=1111simplexhendekerakt, 11ortoplex
d=1212simplexdodekerakt, 12ortoplex
d=1313simplextriskaidekerakt, 13ortoplex
d=1414simplextetradekerakt, 14ortoplex
d=1515simplexpentadekerakt, 15ortoplex
d=1616simplexhexadekerakt, 16ortoplex
d=1717simplexheptadekerakt, 17ortoplex
d=1818simplexoktadekerakt, 18ortoplex
d=1919simplexennedekerakt, 19ortoplex
d=2020simplexikosarakt, 20ortoplex

Teserakt v kultuře

Film

Teserakt se jednou zmiňuje ve filmu Interstellar, kdy robot TARS pronese větu: „Because the bulk beings are closing the tesseract. / Protože ty bytosti právě zavírají teserakt.“[2]

Externí odkazy

Reference

  1. FONTAINE, David A. Archivovaná kopie [online]. [cit. 2010-08-01]. Dostupné v archivu pořízeném dne 2004-07-02. (anglicky) 
  2. (čas 2:33:40, titulky společnosti Netflix)

Média použitá na této stránce

Hypercubecubes.svg
This pseudo-projection of the tesseract or 4-dimensional cube is very similar to the vertex-first-projection. This diagram shows the tesseract as the 4-dimensional measure-polytope, is thus a 4-dimensional cartesian coordinate-system in its 2-dimensional representation.
Hypercubeorder.svg

The 4D-hypercube, layered according to distance from one corner.
As described in "Alice in Wonderland" by the Cheshire Cat, this vertex-first-shadow of the tesseract forms a rhombic dodecahedron.
The two central vertices would coincide in an orthogonal projection from 4 to 3 dimensions, but here they were drawn slightly apart.

This SVG was created with Inkscape.
Schlegel wireframe 8-cell.png
Autor: Původně soubor načetl Tomruen na projektu Wikipedie v jazyce angličtina, Licence: CC BY-SA 3.0
Central projection of the tesseract, a Schlegel diagram


© Držitel autorských práv k tomuto souboru, Robert Webb, dovoluje jeho užití komukoli pro jakýkoli účel, za podmínky, že je držitel práv správně uveden. Další šíření, tvorba odvozených děl, komerční využití i všechna další užití jsou dovolena.
Uveďte autora:
Attribution must be given to Robert Webb's Stella software as the creator of this image along with a link to the website: http://www.software3d.com/Stella.php. A complimentary copy of any book or poster using images from the Software would also be appreciated where feasible.

Hypercubecentral.svg
The central projection of the four dimensional hypercube (tesseract or octahedroid) in 3D space.
8-cell.gif
An animated GIF of a tesseract.