Transcendentní rovnice
Transcendentní rovnice je matematická rovnice, která obsahuje nějakou transcendentní funkci, to znamená funkci nezávislé proměnné, kterou nelze vyjádřit jako polynom. Mezi transcendentní funkce patří například exponenciální a logaritmická funkce, goniometrické funkce a další. Příkladem může být rovnice (jinak také ). Takové rovnice často nemají analytická řešení a lze je řešit pouze přibližnými metodami.
Na rozdíl od algebraické rovnice (např. ), kterou lze vyjádřit polynomem a tedy vyřešit konečným počtem algebraických operací, transcendentní rovnice algebru "přesahují", protože se takto vyřešit nedají. Obecně také nemají analytická řešení a řeší se různými aproximacemi nebo iterací. Výjimku tvoří takové transcendentní rovnice, v nichž se nezávisle proměnná vyskytuje pouze jako argument transcendentní funkce, neboť jejich analytickým řešením je inverzní funkce.
Příklady transcencentních funkcí
Literatura
- Ottův slovník naučný, heslo Algebra. Sv. 1, str. 846
- Ottův slovník naučný, heslo Funkce. Sv. 9, str. 775
- Ottův slovník naučný, heslo Rovnice. Sv. 21, str. 1053