Elektrické napětí

Elektrické napětí
Název veličiny
a její značka
Elektrické napětí
U
Hlavní jednotka SI
a její značka
volt
V
Rozměrový symbol SIU
Dle transformace složekskalární
Zařazení jednotky v soustavě SIzákladní

Elektrické napětí je jedna ze základních veličin při studiu a využívání elektřiny. Napětí jako rozdíl potenciálů mezi dvěma body může způsobit elektrický proud a v analogii s kapalinou odpovídá rozdílu tlaků mezi dvěma body potrubí. Definuje se jako rozdíl potenciálů mezi dvěma body elektrického pole, tj. práce, potřebná k přenesení jednotkového náboje mezi těmito body. Vztah mezi napětím a proudem ve vodiči s elektrickým odporem vyjadřuje Ohmův zákon.

Napětí v elektrických rozvodech může být stejnosměrné (značí se ss nebo symbolem =, např. Uss, resp. U=) nebo střídavé (značí se st nebo symbolem ~, např. Ust, resp. U~), jehož směr toku i okamžitá velikost se v čase periodicky mění, příkladem může být elektrická síť se střídavým napětím 230 V a frekvencí 50 Hz[1], kde napětí vzniká pohybem elektrického vodiče v elektromagnetickém poli generátoru v elektrárně. V technické praxi se napětí často vztahuje vůči zemi s potenciálem nula.

Značka elektrického napětí je velké (většinou efektivní hodnota) resp. malé (většinou okamžitá hodnota, viz nestacionární pole).[2] Jednotkou elektrického napětí v soustavě SI je volt, značí se . Elektrické napětí se měří voltmetrem, který se zapojuje do obvodu paralelně.

Kategorizace napětí podle velikosti[3][4]
KategorieNapěťová hladinaZnačkaStřídavé napětí (efektivní hodnota)Stejnosměrné napětí
Uzeměná síťIzolovaná síť
fáze-zemfáze-fázefáze-fáze
Imalé napětímndo 50 V včetnědo 120 V včetně
IInízké napětínnnad 50 V až

do 600 V včetně

nad 50 V až

do 1 kV včetně

nad 120 V až

do 1 500 V včetně

Avysoké napětívnnad 0,6 kV až

do 30 kV včetně

nad 1 kV až

do 52 kV včetně

nad 1,5 kV až

do 52 kV včetně

Bvelmi vysoké napětívvnnad 30 kV až

do 171 kV včetně

nad 52 kV až

do 300 kV včetně

Czvláště vysoké napětízvnnad 300 kV až

do 800 kV včetně

nad 300 kV až

do 800 kV včetně

Dultra vysoké napětíuvnnad 800 kVnad 800 kV

Definice

Stacionární pole

Elektrické napětí mezi dvěma body s polohovými vektory a lze vyjádřit vztahem:

,

kde je intenzita elektrického pole a je elektrický potenciál.

Práci vykonanou při přemísťování kladného náboje při napětí lze vyjádřit vztahem:

Nestacionární pole

Elektrické napětí indukované ve smyčce vodiče je rovno časové změně celkového magnetického toku, který smyčkou prochází (Faradayův zákon elektromagnetické indukce):

,

kde je magnetický tok,

a v integrálním tvaru kde se integruje po uzavřené vodivé smyčce s plochou :

,

kde je magnetická indukce.

Pokud se polarita napětí mezi body určitého pole v čase nemění, takže lze rozlišit kladný a záporný pól, jedná se o stejnosměrné napětí Uss nebo U=. Typickým příkladem může být elektrický článek, baterie článků nebo akumulátor, kde napětí vzniká elektrochemickým procesem. Pokud se polarita v čase pravidelně mění, jedná se o střídavé napětí Ust nebo U~.

Stejnosměrné napětí

Stejnosměrné napětí je takové elektrické napětí, které v čase nemění svou polaritu. Jako zdroje stejnosměrného napětí se užívají:

Střídavé napětí

Střídavé napětí je takové elektrické napětí, které v čase mění svou polaritu s určitou periodou. Časový průběh napětí je obvykle harmonický:

kde je amplituda střídavého napětí, je úhlová frekvence a je fázový posuv mezi napětím a proudem.

Neharmonické průběhy mohou mít různé tvary:

  • obdélník, např. jak výstup z TTL bez stejnosměrné složky nebo výstup obvodu s operačním zesilovačem, který cykluje mezi svými saturačními hodnotami.
  • pila
    • skoky s jednostranným sklonem
    • skoky s oboustranným sklonem, např. jako neustálá integrace přírůstku s proměnlivým znaménkem (obdélníků)
  • harmonický sinus částečně posunutý (vertikálně) o stejnosměrnou složku
  • nesymetrickým střídavým průběhem může být jakýkoli tvar za kondenzátorem, který blokuje stejnosměrnou složku
    • průběh usměrněných půlvln za diodovým můstkem (oblouky proti špičkám)
    • cyklický průběh impulsů přechodového jevu (vysoké špičky proti mělkým úrovním ustálení)

Velikost harmonického střídavého napětí je obtížné vyjádřit jediným číslem, protože jeho hodnota se neustále mění v čase. Proto definujeme následující hodnoty:

Efektivní fázové a sdružené napětí v třífázové soustavě.

Střední hodnotu harmonického napětí definujeme následovně:

.

Efektivní hodnotu harmonického napětí definujeme následovně:

tj. .

Vztah mezi hodnotou sdruženého napětí (napětí mezi fázemi) a fázového napětí (napětí mezi fází a nulou) se určí následovně:

.
  • V Evropě je standardem trojfázový rozvod se sdruženým efektivním napětím 400 V s frekvencí 50 Hz, tedy s fázovým efektivním napětím 230 V.
  • V USA je standardem trojfázový rozvod se sdruženým efektivním napětím 220 V s frekvencí 60 Hz, tedy s fázovým efektivním napětím 120 V.

Odkazy

Reference

  1. BŘEZINOVÁ, Jana. Napětí v zásuvce u nás a ve světě: Proč Česko přešlo na 230 V? [online]. [cit. 2019-10-09]. Dostupné online. 
  2. ČSN ISO 31-5 Veličiny a jednotky: Elektřina a magnetismus, Český normalizační institut, Praha 1994
  3. ŠUSTA, Richard. POUČENÍ KE ZKOUŠCE Z VYHLÁŠKY č. 50/1978 Sb.. susta.cz [online]. [cit. 2023-01-15]. Dostupné online. 
  4. MEDUNA, Vladimír; KOUDELKA, Ctirad. DRUHY ROZVODNÝCH SÍTÍ. S. 13. fei1.vsb.cz [online]. Fakulta elektrotechniky a informatiky VŠB-TUO, 2006-03 [cit. 2023-01-15]. S. 13. Dostupné online. 

Literatura

  • SEDLÁK, Bedřich; ŠTOLL, Ivan. Elektřina a magnetismus. 3. vyd. Praha: Karolinum, 2012. 595 s. ISBN 978-80-246-2198-2. 

Související články

Externí odkazy

Média použitá na této stránce

Napětí v trojfázové soustavě.png
Autor: Původně soubor načetl Miraceti na projektu Wikipedie v jazyce čeština, Licence: CC BY-SA 3.0
Napětí v trojfázové soustavě.