Weierstrassova funkce

Weierstrassova funkce s konstantami ;

Weierstrassova funkce, pojmenovaná po německém matematikovi Karlu Weierstrassovi, je matematická funkce, která je ve všech bodech spojitá, ale v žádném bodě nemá derivaci (není nikde hladká).

Funkce se chová jako fraktál, neboť zvětšené části grafu a původní graf jsou podobné.[1]

Definice

Weierstrassova funkce bývá uváděna v různých tvarech s různými konstantami.

kde , je kladné liché číslo a konstanty splňují následující podmínku.
Později bylo dokázáno, že poslední uvedenou podmínku lze nahradit podmínkou .
Riemannova funkce,
přičemž údajně podle původní publikace . Tato funkce má však v určitých izolovaných bodech konečné derivace. Podle jiných zdrojů[2] je tato funkce nazývána Riemannova, neboť podle Weierstrasse ji Bernhard Riemann uváděl na svých přednáškách okolo roku 1861.
  • Lze nalézt i jiné tvary nebo konkrétní konstanty.[1][3]

Související články

Externí odkazy

Reference

Média použitá na této stránce

WeierstrassFunction.svg
Plot of the Weierstrass function. A section of the plot is zoomed in on to illustrate the fractal nature of the function. The plot was generated using Mathematica and exported to SVG. I first made a plot of the region and then a plot of a much smaller section around the red point on the image. With the use of Inkscape, I was able to put the two in the same SVG file. This file is an Inkscape SVG, not a plain SVG.
Riemannf.png
Podle MathWorldu cs:Weierstrassova funkce, ale podle jinych Riemannova funkce, a=2