FEM example of 2D solution


Autor:
Formát:
534 x 488 Pixel (66196 Bytes)
Popis:
This is an example of a two-dimensional FEM (finite element method) solution for a cylindrically shaped magnetic shield. In this case "two dimensional" means that the picture shows a flat cross section of an assembly that extends to a large distance at right-angles to the paper (Cartesian coordinates). The rectangle outlined at the right of the picture is the component carrying the electrical current that creates the magnetic field. The cylindrical part is a material of high magnetic permeability (for example iron) and is shielding the area inside the cylinder from magnetic field by diverting the magnetic field. The curved lines represent the direction of magnetic field (or more specifically, lines of B, magnetic flux), and the color represents the magnetic flux density, as indicated by the color scale in the inset legend. Red is high amplitude, where the flux lines are more closely spaced. The color scale does not indicated the units, although it is possible they are Tesla. In the legend the vertical lines beside the 'B' indicate that the value plotted is the magnitude of the vector quantity B. The annotation "smoothed" indicates that the segmented lines (created by dividing the space into separate elements) have been smoothed for a more natural and correct appearance. The area inside the cylinder is low amplitude (dark blue, with widely spaced lines of magnetic flux)), suggesting that the shield is performing as it was designed to. See also Image:Example of 2D mesh.png
Licence:
Credit:
Self-made using Infolytica Corporation's MagNet software
Sdílet obrázek:
Facebook   Twitter   Pinterest   WhatsApp   Telegram   E-Mail
Více informací o licenci na obrázek naleznete zde. Poslední aktualizace: Wed, 01 Nov 2023 03:11:33 GMT

Relevantní obrázky


Relevantní články

Metoda konečných prvků

Metoda konečných prvků je numerická metoda sloužící k simulaci průběhů napětí, deformací, vlastních frekvencí, proudění tepla, jevů elektromagnetismu, proudění tekutin atd. na vytvořeném fyzikálním modelu. Její princip spočívá v diskretizaci spojitého kontinua do určitého (konečného) počtu prvků. MKP je užívána především pro kontrolu již navržených zařízení, nebo pro stanovení kritického (nejnamáhanějšího) místa konstrukce. Ačkoliv jsou principy této metody známy již delší dobu, k jejímu masovému využití došlo teprve s nástupem moderní výpočetní techniky. .. pokračovat ve čtení