Střídač

Jednofázový střídač v můstkovém zapojení tvořený čtyřmi tranzistory doplněnými o čtyři zpětné diody

Střídač je druh elektrického měniče, který převádí stejnosměrné napětí resp. stejnosměrný proud na střídavé napětí resp. střídavý proud.[1][2]

Princip

Trojfázový střídač v můstkovém zapojení tvořený šesti tranzistory doplněnými o šest zpětných diod

Střídač si lze zjednodušeně představit jako sestavu spínačů, které střídavě připojují k zátěži kladný nebo záporný pól zdroje. Střídač může být napájen buď konstantním zdrojem napětí (napěťový střídač) nebo konstantním zdrojem proudu (proudový střídač). V dnešní době tvoří drtivou většinu napěťové střídače, takže toto rozlišení nebývá zpravidla nutné. Napěťový střídač je složen z vypínatelných polovodičových součástek, zejména IGBT tranzistorů, historicky také GTO tyristorů. Pro menší výkony lze použít také tranzistory MOSFET. V době, kdy vypínatelné součástky nedosahovaly potřebných výkonů, se rovněž používaly tyristory vybavené komutačními obvody (tyristorová regulace výkonu).[1][2]

Střídač může pracovat také v obráceném režimu, kdy střídavý proud přeměňuje zpět na stejnosměrný. Toho se využívá např. v elektrických pohonech, kdy při brzdění (viz Elektrodynamická brzda) motor přeměňuje mechanickou energii na elektrickou a ta se přes střídač vrací zpět do zdroje (rekuperace). Kromě toho lze zapojení střídače využít pro pulsní usměrňovač, kdy se střídavá strana střídače zapojí do sítě a výstupem je stejnosměrné napětí. Výhodou tohoto zapojení je při vhodném řízení usměrňovače téměř harmonický průběh odebíraného proudu a účiník se tak blíží 1.[1][2]

Využití

Měnič ve fotovoltaické elektrárně v německém Špýru

Střídače se využívají v různých aplikacích, mezi kterými lze uvést například například záložní zdroje UPS, které využívají akumulátoru, který je udržován v nabitém stavu. V případě výpadku síťového napájení pak pomocí střídače zásobuje střídavou síť energií, a to až do obnovení napětí, případně do svého vybití. Obdobné je použití střídačů ve vozech, karavanech nebo jachtách sloužící k získání střídavého napětí 230V z akumulátoru. Dalším příkladem mohou být fotovoltaické elektrárny, které využívají fotočlánky produkující stejnosměrný proud. Ten je pak prostřednictvím střídače dodáván do střídavé distribuční sítě. Tyto střídače se pak člení na symetrické a asymetrické. Rozdíl spočívá v tom, že symetrický měnič rozděluje energii rovnoměrně mezi všechny tři fáze, zatímco asymetrický pracuje podle potřeby.[3] Nejvýznamnější je však využití střídačů jako koncových stupňů nepřímých frekvenčních měničů, které tvoří jádro moderních elektrických pohonů.

Odkazy

Reference

  1. a b c KŮS, Václav. Elektrické pohony a výkonová elektronika. Plzeň: Západočeská univerzita v Plzni, 2005. ISBN 80-7043-422-8. 
  2. a b c PAVELKA, Jiří; ČEŘOVSKÝ, Zdeněk. Výkonová elektronika. 2. vyd. Praha: České vysoké učení technické, 2000. ISBN 80-01-02094-0. 
  3. ZEMKOVÁ, Barbora. Střídače do fotovoltaické elektrárny: Jak vybrat ten nejvhodnější?. elektřina.cz [online]. 2020-04-28 [cit. 2022-04-14]. Dostupné online. 

Externí odkazy

Média použitá na této stránce

H-bridge inverter cjc.png
Autor: C J Cowie (talk) (Uploads), Licence: CC BY-SA 3.0
H-bridge inverter circuit with transistor switches and antiparallel diodes,
3-phase inverter cjc.png
(c) C J Cowie from en.wikipedia.org, CC BY-SA 3.0
3-phase inverter circuit with wye connected load, drawn by C J Cowie using MicroGrafx Designer
Müllberg Speyer - 2.JPG
Autor: Claus Ableiter, Licence: CC BY-SA 3.0
Müllberg Speyer: Solaranlage auf dem Osthang; hier ein Blick auf einen Wechselrichter der Firma SMA Solar Technology AG; im Hintergrund der Rhein